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Abstract

Optimizing recommender systems for objectives beyond accuracy,
such as diversity, novelty, and personalization, is crucial for long-
term user satisfaction. To this end, the industry has accumulated
vast amounts of structured domain knowledge, which we term hu-
man priors (e.g., item taxonomies, temporal patterns). This knowl-
edge is typically applied through post-hoc adjustments during rank-
ing or post-ranking. However, this approach remains decoupled
from the core model learning, which is particularly undesirable as
the industry shifts to end-to-end generative recommendation foun-
dation models. On the other hand, many methods targeting these
beyond-accuracy objectives often require architecture-specific mod-
ifications and discard these valuable human priors by learning user
intent in a fully unsupervised manner. Instead of discarding the
human priors accumulated over years of practice, we introduce
a backbone-agnostic framework that seamlessly integrates these
human priors directly into the end-to-end training of generative
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recommenders. With lightweight, prior-conditioned adapter heads
inspired by efficient LLM decoding strategies, our approach guides
the model to disentangle user intent along human-understandable
axes (e.g., interaction types, long- vs. short-term interests). We also
introduce a hierarchical composition strategy for modeling com-
plex interactions across different prior types. Extensive experiments
on three large-scale datasets demonstrate that our method signif-
icantly enhances both accuracy and beyond-accuracy objectives.
We also show that human priors allow the backbone model to more
effectively leverage longer context lengths and larger model sizes.
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1 Introduction

The goal of recommender systems extends beyond mere predictive
accuracy. The importance of objectives such as novelty and diver-
sity has long been recognized within the academic community [1],
acknowledging that a successful system must balance relevance
with discovery. Nevertheless, the metrics predominantly used to
evaluate and optimize these systems have centered on accuracy and
engagement [26]. This focus catalyzed significant algorithmic ad-
vancements, from collaborative filtering [13, 29] to deep sequential
models [15, 37]. However, the prioritization of easily measurable
signals has exposed a critical limitation, often termed the alignment
problem: a model may predict the next interaction accurately, yet
fail to align with the user’s broader goals or well-being. This opti-
mization imbalance has been shown to yield detrimental side effects,
including polarization, addiction, and popularity bias, while dis-
couraging the discovery of new user interests. This realization has
accelerated a paradigm shift toward a human-centered approach.
The critical question is evolving from “Is this recommendation
accurate?” to “Is this recommendation worth your time?”, which
requires considering a richer set of objectives that extend beyond
accuracy, such as diversity, novelty, and personalization [28].

To navigate these multifaceted objectives, industrial recommen-
dation systems have accumulated a wide array of post-hoc adjust-
ments applied during the ranking or post-ranking stage [22, 33].
We refer to this accumulated domain expertise as human priors. For
example, diversity is often enforced by greedily selecting candi-
dates that maximize a combined function of relevance and entropy
(defined over manually tuned categories). To favor high-value in-
teractions (e.g., purchases over clicks), practitioners typically build
separate value models for each interaction type and apply heuristic
weighting schemes [8, 23]. Similarly, balancing short-term engage-
ment with long-term interests often involves temporal discount-
ing heuristics or separate value models trained on different time
horizons [31]. Furthermore, ensuring adequate personalization for
minority users frequently relies on first identifying these minor-
ity users and then optimizing a separate value model, or boosting
content based on demographic features [20].

Recently, the field is trending towards the development of end-to-
end (E2E) generative recommendation foundation models [5, 9, 37].
While powerful, these models often attempt to learn user intent in
an entirely unsupervised manner. Consequently, we still rely on the
aforementioned post-hoc adjustments. However, these adjustments
remain disconnected from the core representation learning process.
As a result, the core model itself remains a black box, unaware
of the crucial objectives. Additionally, to accommodate such ad-
justments, it is usually required to make specific changes to the
model recommendations, which incurs additional cost. Alternative
approaches attempt to explicitly address specific aspects, such as
multi-interest networks for diversity [4, 18, 34] or disentanglement
methods for interpretability [12, 21]. However, these methods typ-
ically require specialized architectures and their applicability in
industry scenarios is still limited.

This dichotomy between complex post-hoc adjustments and
unsupervised E2E models motivates a question: Instead of discard-
ing the human priors accumulated over years of practice, can we
integrate them directly into the learning process of generative

recommender systems in a simple, effective, and interpretable man-
ner? To this end, we propose a backbone-agnostic framework that
seamlessly injects various human priors into the generative model
training with lightweight adapters, by drawing inspiration from effi-
cient decoding strategies in Large Language Models (LLMs) [3]. Un-
like post-hoc filtering or architecture-specific modifications, these
adapter heads guide the sequential model to learn user represen-
tations that are naturally disentangled. This renders the model
inherently controllable, explainable, and better aligned with com-
plex, real-world objectives.

Our main contributions are summarized as follows:
• Wegeneralize the concept of “multi-interest” to “multi-faceted
intent” by demonstrating the framework’s effectiveness across
diverse human priors, including semantic, behavioral, tem-
poral, and graph priors.

• We propose a lightweight and backbone-agnostic framework
that uses prior-conditioned adapter heads to disentangle
multifaceted user intent in an end-to-end manner.

• We introduce a hierarchical composition strategy to model
complex interactions across different prior types, providing
a flexible inductive bias for learning compositional represen-
tations.

• Extensive experiments on three large-scale datasets demon-
strate that our method not only improves standard accuracy
metrics, but also yields significant improvements on other
objectives, such as diversity, personalization, and user inter-
est discovery1.

2 Related Work

We position our work at the intersection of generative recommen-
dation, multi-interest and disentangled representation learning, and
the integration of structured knowledge, motivated by the broader
shift toward human-centered recommendation.

2.1 Generative Recommenders

Modeling the temporal dynamics of user behavior is a fundamental
challenge in recommender systems. Early approaches used Recur-
rent Neural Networks (e.g., GRU4Rec [14]). The field shifted sig-
nificantly by adopting the Transformer architecture, which offers
superior scalability and capacity for modeling long-range dependen-
cies. SASRec [15] established a strong baseline using self-attention
for next-item prediction, leading to variants such as BERT4Rec [30]
(bidirectional modeling) and S3Rec [38] (self-supervised learning).

Recently, the focus has shifted to large-scale foundational models.
Generative Recommenders, such as HSTU [37], frame recommen-
dation as a sequential transduction task, demonstrating significant
performance gains at scale. HLLM [5] introduces a hierarchical ap-
proach by stacking two large language models (LLMs): an item LLM
to capture item content and a user LLM to model user behavior.

Despite these advances, the prevailing paradigm relies on encod-
ing the user’s history into a single, monolithic state vector. This
representation bottleneck struggles to capture the heterogeneity
and multi-faceted nature of user intent, often leading to suboptimal
recommendations when interests conflict or evolve.

1Code: github.com/zhykoties/Multi-Head-Recommendation-with-Human-Priors

https://github.com/zhykoties/Multi-Head-Recommendation-with-Human-Priors
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2.2 Modeling Multi-Faceted User Intent

To address the limitations of monolithic representations, works on
multi-interest frameworks and disentangled representation learn-
ing emerged. They generally attempt to discover latent factors of
user intent in an unsupervised manner and learn the preference
distribution conditioned on these factors.

Multi-interest frameworks aim to extract multiple vectors rep-
resenting distinct user preferences from a single sequence. Many
prominent models adopt a “cluster-then-encode” paradigm, rely-
ing on algorithms to partition the user history before encoding.
For instance, MIND [18] employed dynamic routing via capsule
networks to group interactions. ComiRec [4] extended this with
a controllable aggregation framework, and REMI [34] aimed to
improve the stability of this process using regularization to prevent
routing collapse.

Disentangled representation learning focuses on separating the
underlying factors of variation in user behavior, often using Varia-
tional Autoencoders (VAEs). For example, MacridVAE [21] sought
to separate high-level intentions from low-level preferences, while
DualVAE [12] learns disentangled multi-aspect representations for
both users and items, and ensures a correspondence between each
aspect of the user representation and the item representation.

While valuable, these unsupervised approaches share critical lim-
itations. First, they primarily focus on disentangling topic interests
(e.g., “electronics” vs. “apparel”), often conflating other critical di-
mensions such as temporality or co-engagement structures. Second,
the “cluster-then-encode” paradigm often relies on computationally
intensive or potentially unstable discovery processes (e.g., dynamic
routing, clustering). Third, the learned interest vectors often lack
explicit semantic meaning. This lack of interpretability severely lim-
its controllability, making it difficult to steer recommendations to
align with business objectives, such as promoting more educational
videos in order to comply with regulations.

2.3 Integration of Human Priors and Structure

There is growing recognition that integrating structured, human-
understandable knowledge, or human priors, can enhance model
performance and interpretability (e.g., expert-defined in-domain
taxonomy [35]).

In recommender systems, human priors have traditionally been
incorporated through rigid structures or post-hoc adjustments. Hi-
erarchical models, such as HieRec [25], use fixed, predefined item
taxonomies to create a static interest hierarchy. While effective
for taxonomy-based disentanglement, such methods cannot easily
accommodate diverse, orthogonal priors (e.g., temporal dynamics)
that do not fit neatly into item categories. Alternatively, industrial
systems often rely on brittle post-hoc heuristic rules, which are
decoupled from the core learning process.

Knowledge and Adaptation in LLMs. In language models, there
is significant work on enhancing models with external knowledge
and structural biases. Methods like KnowBert [24] inject entity
embeddings from knowledge bases to improve factual recall. Fur-
thermore, introducing structural inductive biases, such as the Tree
of Thoughts (ToT) framework [36], has been shown to improve
reasoning abilities.

Table 1: Examples of human priors supported by our frame-

work.

Prior Type Description and Examples

Item Semantic item attributes, such as product categories,
content genres, or learned topic clusters.

Temporal Evolution of user interests (e.g., short-term vs. long-
term).

Event The modality of the user-item interaction (e.g., click,
like, purchase, subscribe).

Graph Community-based item clusters derived from co-
engagement or knowledge graphs.

User User attributes such as demographics, subscription
status, or clusters from a user co-interaction graph.

Drawing inspiration from these trends and efficient LLM adapta-
tion techniques like Medusa [3], our work diverges from previous
approaches by proposing an “encode-then-project” paradigm. We
integrate diverse human priors directly into the end-to-end learning
process using lightweight, prior-conditioned adapter heads. This
bypasses the need for expensive unsupervised discovery or explicit
history clustering, avoids rigid taxonomies, and yields represen-
tations that are inherently disentangled along interpretable and
controllable axes.

3 Model

3.1 Problem Formulation

Let a user’s interaction history be a sequence of items 𝑥1:𝑇 =

(𝑥1, . . . , 𝑥𝑇 ), where 𝑇 is the context length, representing the num-
ber of item interactions in the history. The objective is to predict
the user’s future engagement over the next 𝜏 items, denoted as
Y = {𝑦𝑇+1, . . . , 𝑦𝑇+𝜏 }.

First, a sequential encoder 𝑓𝜃 (e.g., a decoder-only transformer)
is used to map the interaction history 𝑥1:𝑇 into a latent user state
representation h𝑇 ∈ R𝑑 . Let V be the set of all candidate items,
and each item 𝑖 ∈ V is represented by an embedding e𝑖 ∈ R𝑑 .
These item embeddings can either be ID-based (e.g., HSTU) or
semantic-based (e.g., HLLM). The conventional approach computes
a relevance score for each candidate item 𝑖 using the dot product
between the user state and the item embedding:

𝑠 (𝑖 | h𝑇 ) = h⊤𝑇 e𝑖 . (1)

The top-K items with the highest scores are then recommended
to the user. This approach relies on a single representation ℎ𝑇 to
capture all facets of user intent, which may be suboptimal when
interests are diverse, context-dependent, or evolving over time.

3.2 Incorporating Human Priors via

Conditioned Query Heads

Real-world user behavior is often characterized by specific factors
that can be formalized as “human priors”. These priors provide a
structured and interpretable way to partition the interaction space
along meaningful dimensions, such as item semantics, temporal
dynamics, or interaction modalities (see Table 1). To effectively
incorporate these priors without modifying the backbone model
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𝑓𝜃 , we introduce a multi-head framework that employs multiple
lightweight, prior-conditioned adapter heads to generate a set of
specialized query embeddings, instead of relying on a single rep-
resentation 𝒉𝑇 . Let K be the index set of the prior heads. With
each head 𝑘 ∈ K corresponding to a specific prior group (e.g.,
the “Sports” category), we can project the backbone’s output h𝑇
into different specialized query vectors q1, · · · q |K | . Inspired by the
multi-head decoding structure of Medusa [3], we implement the
projection through a residual adapter :

q𝑘 = h𝑇 + SiLU
(
W(𝑘 )h𝑇

)
, (2)

where W(𝑘 ) ∈ R𝑑×𝑑 is a learnable transformation matrix and
SiLU is the activation function [11]. We initialize eachW(𝑘 ) with
zeros, ensuring that all heads output the same representation as
the original user state h𝑇 at the beginning of training. As training
progresses, each individual head specializes only when supported
by the training signal, whereas the backbonemodel is shared among
all prior heads. This design allows the backbone to process a user’s
entire interaction history, while each prior head is dedicated to
modeling a specific subset of interactions.

Compatibility masking. In our design, each head 𝑘 is restricted to
retrieve only items compatible with its associated prior group, with
the set of such items denoted by Ω𝑘 ⊆ V , where the definition of
Ω𝑘 depends on the prior type. For example, for item-based priors
(e.g., categories), an item 𝑖 belongs toΩ𝑘 if it is labeled with category
𝑘 , and for event-based priors, Ω𝑘 includes items accessible through
event type 𝑘 . To enforce this specialization in inference, we define
a score through the following compatibility masking:

𝑠𝑘 (𝑖 |𝒉𝑇 ) =

{
q⊤
𝑘
e𝑖 , 𝑖 ∈ Ω𝑘 ,

−∞, 𝑖 ∉ Ω𝑘 .
(3)

This masking approach filters out all the incompatible items for
the prior heads and ensures each head can focus exclusively on the
subset of items aligned with its prior group. As a result, in contrast
to the score in Eq. (1), the resulting score in Eq. (3) is tailored to dif-
ferent items with their prior information, which leads to an explicit
decomposition of user intent. Unlike conventional unsupervised
approaches built on implicit latent factors [12, 18, 21], our method
allows for more model interpretability as it guarantees that the
learned representation 𝒒𝑘 is identifiable. In addition, while conven-
tional approaches suffer from the inherent uncertainty arising from
the entanglement of user preferences and their underlying latent
factors, our method mitigates this issue by disentangling this com-
plexity into a set of more tractable sub-tasks, thereby enhancing
the computational efficiency.

With compatibility masking, different query heads are special-
izedwith distinct functional roles determined by the specified priors.
Thus, when predicting for one prior group, our method can largely
reduce the reliance on irrelevant features, which minimizes the
mutual interference among these different objectives. As a result,
the model can show stronger predictive capability for each prior
group, and thus result in a performance improvement with the
cooperation of the heads.

3.3 Hierarchical Composition of Priors

Practical recommendation settings often involve multiple, poten-
tially interacting priors (e.g., combining item categories with tempo-
ral interests). Given 𝐷 distinct sets of priors {P (1) , . . . ,P (𝐷 ) } with
cardinalities𝐶 (1) , . . . ,𝐶 (𝐷 ) respectively, a key challenge when gen-
eralizing the adapter mechanism (proposed previously in Eq. (2)) is
how to effectively capture the interactions between different prior
sets while mitigating data sparsity for rare combinations.

We introduce a hierarchical composition strategy that organizes
the adapters sequentially into a tree structure. This architecture
enforces a coarse-to-fine specialization process, encouraging the
model to first learn robust, shared intermediate representations at
the upper levels before refining for specific prior combinations.

This design is motivated by Bayesian hierarchical modeling [2],
which has the “shrinkage” effect, where group-level estimates are
pulled towards a common mean as an effective form of regulariza-
tion, preventing overfitting in rare prior combinations. Furthermore,
this structural inductive bias mirrors recent advances in Large Lan-
guage Models (LLMs), where hierarchical structures are employed
to enhance reasoning, such as in Tree of Thoughts [36].

Starting with the base representation z(0) = h𝑇 , we recursively
apply prior-specific residual adapters. At depth𝑑 , the representation
corresponding to the path (𝑔1, . . . , 𝑔𝑑 ) is:

z(𝑑 )𝑔1,...,𝑔𝑑 = z(𝑑−1)𝑔1,...,𝑔𝑑−1 + A (𝑑 )
𝑔1,...,𝑔𝑑

(
z(𝑑−1)𝑔1,...,𝑔𝑑−1

)
. (4)

Here, A (𝑑 )
𝑔1,...,𝑔𝑑 denotes path-dependent adapters, where the pa-

rameters at depth 𝑑 are conditioned on the entire upstream path
(𝑔1, . . . , 𝑔𝑑 ). It is defined as:

A (𝑑 )
𝑔1,...,𝑔𝑑 (z) = SiLU

(
W(𝑑 )
𝑔1,...,𝑔𝑑 z

)
+ e𝑔𝑑−1 , (5)

where W(𝑑 )
𝑔1,...,𝑔𝑑 ∈ R𝑑×𝑑 are path-dependent weights. The final

queries are corresponding to the leaf nodes q𝑔1,...,𝑔𝐷 = z(𝐷 )
𝑔1,...,𝑔𝐷 in

the tree structure. We also incorporate a learned group embedding
e𝑔𝑑−1 ∈ R𝑑 . This embedding is shared across all branches that in-
clude 𝑔𝑑−1 (e.g., across all sub-trees rooted at “short-term interest”),
encouraging information sharing among related heads.

Hierarchical Compatibility. The eligible item set for a hierarchical
head is defined by the intersection of the compatibilities across all
involved priors:

Ω𝑔1,...,𝑔𝐷 =

𝐷⋂
𝑑=1

Ω
(𝑑 )
𝑔𝑑

.

An item is eligible for the head (𝑔1, . . . , 𝑔𝐷 ) if and only if it is
compatible with all involved priors along the path.

3.4 Training Objective

For a specific head 𝑘 , the set of positive examples is defined as the
subset of future ground-truth items Y compatible with that head:

Y𝑘 = {𝑦 ∈ Y : 𝑦 ∈ Ω𝑘 }. (6)

Heads for which Y𝑘 = ∅ in a batch are excluded from the loss
computation for that batch.

We optimize the parameters of each head using a unified loss
framework, which can be instantiated as either a next-token predic-
tion loss (for ID-based embeddings) or a contrastive learning loss
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(for semantic-based embeddings):

L𝑘,𝑡 = −1𝑦𝑇+𝑡 ∈Y𝑘
log

exp(𝑠𝑘 (𝑦𝑇+𝑡 ))∑
𝑗∈Ω̃𝑘

exp(𝑠𝑘 ( 𝑗))
. (7)

Here, L𝑘,𝑡 is the loss for head 𝑘 with 𝑦𝑇+𝑡 as the positive item.
Ω̃𝑘 ⊆ Ω𝑘 is the set of items over which the softmax is computed.
For next-token prediction, Ω̃𝑘 can be all the compatible items Ω𝑘 .
For contrastive learning, it is typically a subset containing the
positives and some sampled negatives.

We restrict Ω̃𝑘 to be only from Ω𝑘 . This in-group negative sam-
pling forces the head to discriminate among items within the same
prior group. This naturally exposes the model to harder negatives
(semantically or contextually similar items), leading to improved
representations [27].

To properly balance the contributions from different heads and
prioritize near-future predictions, we introduce a reweighting scheme.
The final loss is a sum over the forecast horizon, with each step
weighted by a temporal discount factor:

L =

𝜏∑︁
𝑡=1

𝛾𝑡−1
∑︁
𝑘∈K

𝑤𝑘 L𝑘,𝑡 , (8)

where L𝑘,𝑡 is defined in Eq. (7). This formulation incorporates two
mechanisms:

(1) Frequency Balancing: To mitigate the impact of data im-
balance across heads and prevent common priors from dom-
inating the loss, we normalize by the relative frequency of
each combination of priors:𝑤 freq

𝑘
=

|Y𝑘 |∑
𝑗 ∈K |Y𝑗 | .

(2) Temporal Discounting: We apply a discount factor 𝛾 ∈
(0, 1] to prioritize near-future predictions, since predicting
the very next item is oftenmore critical than the more distant
items, and the labels are also less noisy.

3.5 Inference and Score Fusion

During inference, given a user state h𝑇 , we compute all prior-
conditioned queries {q𝑘 }𝑘∈K . For a candidate item 𝑖 , we identify
the set of eligible heads H(𝑖) = {𝑘 : 𝑖 ∈ Ω𝑘 }. We then fuse the
scores {𝑠𝑘 (𝑖)}𝑘∈H(𝑖 ) to obtain a final relevance score 𝑆 (𝑖), which
is then used to rank the candidates.

We adopt amaximum fusion strategy: 𝑆max (𝑖) = max𝑘∈H(𝑖 ) 𝑠𝑘 (𝑖),
which allows the most relevant specialist to dominate2. Not only is
it computationally simple, but it also enhances interpretability by
providing a clear explanation for the recommendation (e.g., “this
item was recommended because it strongly matches your short-
term interest in electronics”).

3.6 Implementation Details

In Figure 1, we illustrate an instantiation of our hierarchical frame-
work with Temporal (𝐿𝑇 /𝑆𝑇2) and Graph Priors (𝐶1,𝐶2). The fore-
cast horizon (𝜏 = 6) is split into short-term (𝑆𝑇 ) and long-term (𝐿𝑇 )
segments. In the first layer, adapters specialize on these temporal
segments, yielding the intermediate representations z(1)

𝑆𝑇
and z(1)

𝐿𝑇
.

The adapter A (1)
𝑆𝑇

is trained using only ground-truth items in the
𝑆𝑇 segment, while A (1)

𝐿𝑇
is trained using items in the 𝐿𝑇 segment.

2We explore alternative fusion strategies in Section A.1.3.

The second layer further refines this specialization based on Graph
Prior. For example, the adapter A (2)

𝑆𝑇 ,𝐶1
is optimized specifically

to predict items that belong to the cluster 𝐶1 (green) and the 𝑆𝑇
segment. In other words, each leaf head is responsible only for the
intersection of its associated priors.

Crucially, the backbone processes the full context, regardless of
the item’s cluster. Specialization occurs only in the adapter heads.
During training, we use in-group negative sampling (Section 3.4).
Graph heads sample negatives from compatible cluster sets (e.g.,
Ω𝐶1 ), whereas Temporal heads restrict training signals based on
the item’s position in the forecast horizon.

Figure 1: An instantiation of the hierarchical composition

strategy with Temporal (LT/ST2) and Graph Priors.

The proposed framework ismodel-agnostic and can be integrated
with any generative recommender system that produces a dense
user representation h𝑇 . The efficiency of the approach stems from
the lightweight nature of the adapters3 and the parallelizability of
the query computations. Formally, let 𝐾 denote the total number of
heads and𝑑 the hidden dimension. The added parameter complexity
is𝑂 (𝐾 ·𝑑2). The value of𝐾 depends on the structure: it is the sum of
categories (e.g., taxonomies), or the product for independent priors
(e.g., Temporal x Graph). During inference, adapters at the same
depth level are executed in parallel, ensuring the latency overhead
remains low. Per-group indices {Ω𝑘 } are pre-computed and cached,
enabling efficient computation of the masked scores (Eq. (3)) via
batched matrix multiplication.

4 Experiments

4.1 Datasets and Prior Instantiation

To instantiate and evaluate different types of human priors (Table 1),
we select three real-world datasets from various domains: video
(Pixel8M), e-Commerce (MerRec), and news (EB-NeRD). Detailed
statistics are provided in Appendix A (Table 4).

4.1.1 Pixel8M (Video). Pixel8M [7] is a large-scale dataset from
an online video sharing platform, featuring rich multimodal item
content with text and images. As the industry trend is to incorporate
more modalities, this allows us to test whether our framework
provides additional benefits even when the backbone model can
leverage these modalities to recommend diverse contents.

Semantic Item Prior: To create a structured semantic prior, we
consolidated the dataset’s 111 highly unbalanced and sometimes
3We show each head only incurs an extra 0.14% of overall parameters in Section 4.3.



WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates Yunkai Zhang et al.

redundant tags into eight high-level categories: “Real Life”, “Infor-
mational & Educational”, “Fictional Character”, “Music”, “Science
& Technology”, “Entertainment”, “Gaming”, “Performance & Arts”.
To perform this task easily, consistently, and at scale, we follow
the practical approach [10] and prompted ChatGPT to assign each
original tag to one or more categories.

4.1.2 MerRec (E-commerce). MerRec [19] is derived from the Mer-
cari C2C marketplace. It is characterized by exceptionally long
interaction sequences (there are 119756 users who have at least
2000 interactions) and diverse user behaviors.

Event Prior: Users interact with items with one of six event
types: “item view”, “item like”, “add to cart”, “offer make”, “Buy
start”, and “Buy complete”. These events represent different levels
of user intent. A key challenge here is that “offer make”, “Buy start”,
and “Buy complete” only occur less than 1% of the time, but they are
also most directly related to monetization. We use event types as
priors to investigate the framework’s ability to specialize on sparse,
high-value signals.

4.1.3 EB-NeRD (News). EB-NeRD [16] is a news recommendation
dataset with high-quality textual content. This dataset is less sparse
than the previous two datasets, and the interaction patterns in news
consumption often reflect the underlying community structures.

GraphPrior:We construct an item co-engagement graph, where
an edge exists if two items are interacted with by the same user. To
discover underlying structural priors, for simplicity, we apply the
off-the-shelf Leiden algorithm [32] from the igraph package, an
established method for community detection that optimizes modu-
larity and guarantees that the resulting communities are well con-
nected. We control the influence of highly active users and merge
very small clusters (details in Appendix A). The resulting item clus-
ters are used as graph-based priors, testing the framework’s ability
to leverage community structures4.

4.1.4 General. Temporal Prior. In addition to domain-specific
priors, we instantiate temporal priors, applicable across all datasets,
to capture the evolution of user interests. Given a forecast horizon 𝜏 ,
we divide it into 𝑛 contiguous segments. Each segment corresponds
to a prior head (e.g., short-term vs. long-term), trained only on
ground-truth items falling within that specific temporal segment.

4.2 Experiment Setup

We integrate our framework with two recent generative recom-
mender architectures to demonstrate its generalizability:

• HSTU [37]: A scalable, Transformer-based architecture rep-
resenting the state-of-the-art in ID-based modeling. It uses
learned item ID embeddings, and is trained with a next-item
prediction objective. We experiment with five sizes, from
12.42M to 1B parameters. We report based on size 3 by de-
fault.

• HLLM [5]: A hierarchical LLM-based architecture represent-
ing the state-of-the-art in semantic-basedmodeling. It uses
an Item LLM to derive item embeddings from text and visual

4While this algorithmic clustering is a practical choice for our implementation, its
success also underscores the framework’s tolerance for noisy or approximated priors,
suggesting it can derive benefits even from imperfect structural information.

content, and is trained with a contrastive learning objective
for next item prediction.

We compare the performance of these backbone models against
their counterparts enhanced with our prior-conditioned adapter
framework. We also compare against the following baselines:

• ComiRec [4] is a representative multi-interest network that
outputs multiple embeddings as the different interests for
each user, and uses a controllable aggregation framework to
balance diversity and accuracy.

• REMI [34] improves multi-interest networks like ComiRec
by introducing Interest-aware Hard Negative Mining and a
Routing Regularization term to mitigate routing collapse.

• DualVAE [12] learns disentangled multi-aspect represen-
tations for both users and items, and uses neighborhood-
enhanced contrastive learning to ensure a direct correspon-
dence between each aspect of item representations and user
representations.

Architectural details and hyperparameters are provided in Ap-
pendix A.5 We evaluate the recommendation accuracy using stan-
dard retrieval metrics: Recall@K and NDCG@K (Normalized
Discounted Cumulative Gain).

4.3 Main Results

Table 2 summarizes the overall performance across the three datasets
and two backbone architectures. The integration of human priors
consistently improves both Recall and NDCG over different set-
tings. Furthermore, combining multiple priors (e.g., Item + Tempo-
ral, Graph + Temporal) can lead to additional performance gains,
demonstrating that our framework can effectively capture multi-
faceted user intents. On EB-NeRD, with 8 temporal segments and 11
clusters, our method is able to scale to a total of 88 heads. Notably,
our adapter heads are very lightweight. In the HSTU case, a single
head only takes up 0.14% of the overall model parameters.

Both ComiRec and REMI underperform their counterparts when
we inject human prior into HSTU. The reason is that instead of
relying on purely unsupervised methods to discover latent inter-
ests as in multi-interest networks, our approach uses these explicit
priors as a form of weak supervision to guide the model in learning
different user intents as well as disentangled representations. As
for DualVAE, we observe it to be very unstable when implemented
based on the deep HSTU backbone. With its original shallow en-
coders, it only marginally outperforms HSTU on Pixel8M and even
slightly lags behind HSTU on MerRec and EB-NeRD.

4.4 Benefits Beyond Standard Metrics

4.4.1 A Better Accuracy-Diversity Trade-off. We demonstrate that
our method not only improves traditional ranking metrics such as
Recall and NDCG, but also promotes recommendation diversity.
To quantify this, we define an entropy-based metric in terms of
the eight binary item categories on the Pixel8M dataset, 𝐻@K =

−∑8
𝑗=1

(
𝑛 𝑗

𝐾
log2

𝑛 𝑗

𝐾

)
, where 𝑛 𝑗 is the number of top-𝐾 items for

5For a fair comparison, we implement ComiRec and REMI on top of theHSTU backbone,
and we validated that they achieve better performances compared to the original
dense layers. However, DualVAE becomes very unstable once we switch to deep
encoders, instead of the shallow encoders in its codebase, so we stick with its original
implementation.

https://github.com/georgeguo-cn/DualVAE
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Table 2: Overall performance comparison. Human priors con-

sistently lead to improvements over the backbone models

(HSTU and HLLM). The backbones and baselines are high-

lighted in gray. Note that HLLM and HSTU results are not

directly comparable due to different context lengths used

(See Appendix A), and all the baselines are run under the

HSTU settings and should only be compared to HSTU.

Recall (%) NDCG (%)

Dataset Model @5 @10 @5 @10

Pixel8M

HLLM 0.84 1.37 1.46 1.42
+Item 0.91 1.48 1.57 1.54
+LT/ST 0.88 1.44 1.52 1.50
+Both 0.92 1.50 1.59 1.56

ComiRec 1.04 1.70 1.80 1.77
REMI 1.13 1.81 1.99 1.92
DualVAE 0.95 1.49 1.67 1.60
HSTU 0.90 1.45 1.56 1.53
+Item 1.08 1.75 1.88 1.83
+LT/ST 1.15 1.90 1.98 1.96
+Both 1.23 2.00 2.12 2.09

MerRec

HLLM 33.83 42.03 24.38 27.05
+Event 35.85 43.48 26.87 29.36

ComiRec 40.74 49.49 30.07 33.01
REMI 41.46 49.27 31.55 33.15
DualVAE 38.36 48.20 27.29 31.03
HSTU 40.37 49.30 29.71 32.61
+Event 42.61 50.33 33.49 35.99

EB-NeRD

HLLM 18.14 31.23 26.40 29.47
+Graph 21.09 36.05 32.19 35.05
+LT/ST 19.76 34.05 28.17 31.57
+Both 21.54 36.24 32.38 35.16

ComiRec 21.47 35.71 32.18 34.75
REMI 21.61 34.79 33.11 34.88
DualVAE 18.54 31.24 28.28 30.61
HSTU 19.77 32.54 30.36 32.30
+Graph 20.78 34.48 31.59 33.84
+LT/ST 21.50 36.28 32.20 34.99
+Both 22.36 37.05 33.87 36.24

which the 𝑗-th binary feature is active. Intuitively, a higher entropy
means that the top-𝐾 recommended items are semantically more
diverse.

As shown in Figure 2, all model variants begin training with a
high entropy, which gradually declines as the training progresses.
Interestingly, higher entropy typically corresponds to a lowerNDCG
due to the accuracy-diversity trade-off. However, we observe that
injecting item priors can partially break this constraint: the vari-
ants using Item Prior and both priors simultaneously achieve a
higher NDCG while maintaining a higher entropy. This balance
between relevance and diversity is also observed in HLLM (Ap-
pendix Table 8). We also include a strong multi-interest network
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Figure 2: Evolution of entropy as training progresses on the

validation set. Here HSTU is the backbone model.

baseline, REMI. Without explicit supervision from item priors, it
only marginally improves diversity over the HSTU backbone.

4.4.2 User Interest Exploration. Exploration in recommender sys-
tems aims to uncover content a user may like but has not yet en-
gaged with. Although it improves long-term user engagement, it is
often believed to negatively affect near-term experience [6], similar
to the exploration versus exploitation dilemma in reinforcement
learning. We argue that adding multiple heads for human priors
can strike a good balance between the two. To evaluate this, we
analyze the performance of our method on a targeted subset of
users in the Pixel8M dataset using HLLM. Specifically, we identify
users who interacted with item features during the forecast horizon
of the test split, but who had never engaged with those features in
their prior history. In these cases, the model’s success hinges on its
ability to recommend items from entirely new categories. Applying
this criterion, we identified a total of 283,497 such users.

Table 3 compares the relative improvement over the HLLM with-
out priors baseline achieved by different prior configurations on
the standard evaluation set (All Users) versus this subset (New Inter-
est). We also quantify the relative boost, which measures how much
more the method improves performance on the New Interest subset
compared to All Users.

We observe that the relative improvements are consistently
higher for this New Interest subset across all configurations. More-
over, incorporating Item Prior yields substantially more benefits
compared to using only Temporal Prior (LT/ST). For example, HLLM
with both LT/ST1 and Item Prior achieves a remarkable relative
boost of +15.76% for NDCG@10, compared to only +3.58% for
LT/ST1 alone. This supports the intuition that when learning the
different categories together, the user embedding will be biased
against the minority items, while dedicating specific heads to the
minority items allows us to retain the capacity and encourage ex-
ploration toward novel categories. Case studies in Section A.1.1
further illustrate this insight.

4.4.3 Personalization. Another common issue in recommender
systems is popularity bias. In some cases, it means that the behaviors
of some users, whose interests are different from the majority,
might receive inferior recommendations. To address this issue, we
instantiated User Prior on EB-NeRD, constructed similar to Graph
Prior. But here, the nodes are the users in the co-engagement graph,
and an edge exists between the two users if they interacted with the
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Table 3: The relative improvement over the HLLM baseline

for All Users vs. New Interest. Both priors help with user

interest exploration, and Item Prior brings a even larger gain

compared to LT/ST interest due to more direct supervision.

Variant Split N@10 R@10 N@200 R@200

LT/ST1
All 7.16% 7.80% 8.10% 8.50%
New 7.41% 8.50% 8.90% 9.70%
Rel. Boost +3.58% +9.00% +10.30% +14.40%

LT/ST2
All 5.23% 6.20% 8.00% 9.20%
New 5.37% 6.30% 8.40% 9.80%
Rel. Boost +2.68% +1.70% +5.50% +6.80%

LT/ST1 + Item
All 8.53% 9.00% 7.90% 7.50%
New 9.87% 10.40% 9.20% 9.00%
Rel. Boost +15.76% +16.50% +17.50% +19.50%

LT/ST2 + Item
All 9.63% 10.40% 10.70% 11.20%
New 10.22% 11.20% 11.80% 12.50%
Rel. Boost +6.10% +7.50% +9.60% +11.80%

LT/ST4 + Item
All 8.02% 8.90% 9.80% 10.60%
New 8.49% 9.50% 10.50% 11.50%
Rel. Boost +5.94% +7.30% +6.90% +8.30%

same item in the train set. To avoid popular items from making the
graph too dense, for each item, we random sample a maximum of
2000 users that have interacted with it before generating the edges.
We then employ the Leiden algorithm [32] with the modularity
objective to cluster the graph into a total of 9 user groups. We
define User Prior by assigning an adapter to each group.

As shown in Figure 3, before introducing any prior, the minority
groups with fewer users generally suffer from lower recommen-
dation quality. However, by dedicating a separate head to each
user group, we effectively lower the impact of the majority users
from dominating the query representation, which allows us to bet-
ter personalize the recommendations for the minority users. This
results in bigger improvements for groups with fewer users, and
recommendation quality looks more balanced after User Prior is
introduced.
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Figure 3: User Prior leads to more personalized recommenda-

tions, especially on the minority user groups.

4.5 Scalability

A key trend in recommender systems is the use of longer context
lengths to enhance personalization. While scaling laws typically
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Figure 4: Scaling by context lengths and sizes for HSTU.

require more training data to improve larger models, our experimen-
tal setup with a fixed dataset introduces a trade-off: increasing the
context length reduces the number of available training windows.
To investigate this, we test HSTU with longer context lengths and
larger model sizes on Pixel8M. In Figure 4, the left subplot shows
that for size 4 and 1b, the base model (LT/ST1, equivalent to the
discounted loss) struggles to benefit from increasing context as we
increase the context length beyond 20 items. However, in the right
subplot, when guided by human priors, the same model architec-
ture continues to extract performance gains from longer contexts
and larger model sizes, although the magnitude of increase slowly
plateaus. This finding suggests that the structural information im-
posed by human priors facilitates more efficient learning, allowing
themodel to better benefit from increasing context and larger model
sizes when the amount of training data is fixed.

5 Conclusion

By integrating human priors directly into generative recommenders’
learning process, our proposed framework offers a principled ap-
proach to aligning recommendations with multifaceted human
objectives. We view the capacity to leverage human priors not as
a dependency, but as a strategic advantage tailored to the unique
landscape of recommender systems. Unlike domains where human
priors are scarce, the recommendation field possesses decades of
market-validated expertise, resulting in many high-quality priors.
Our experiments demonstrate that prior-conditioned adapter heads
not only enhance accuracy, but also improve diversity, novelty,
and personalization, which are key dimensions of user experience
that are often overlooked. The framework’s backbone-agnostic de-
sign and hierarchical composition strategy further enable flexible
modeling of complex user intent, making it broadly applicable.

While this work showcases the efficacy of using pre-defined
priors, we view this as a fundamental but not the final step. A
promising future direction is to establish a formal methodology for
what constitutes a “good” prior, guiding the prior curation whether
through human-in-the-loop or automated discovery of salient priors
directly from data. Advancing the architectural fusion of these
priors with more dynamic, context-aware mechanisms will also be
critical. As the first attempt towards this goal, this work aims to
strengthen the bridge between abstract human knowledge and the
end-to-end optimization of large-scale generative recommenders.
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A Experiment Details

Table 4: Statistics of the datasets after preprocessing. Filtering

criteria vary slightly depending on the backbone model.

Dataset Backbone # Users # Items # Interactions

Pixel8M HSTU 561,737 398,261 57M
HLLM 2,220,506 404,182 102M

MerRec Both 119,754 1,255,665 521M

EB-NeRD Both 44,968 25,216 30M
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Size 1 Size 2 Size 3 Size 4 1B

num_layers 4 8 12 16 22
num_heads 4 8 8 16 32
d_model 128 256 512 1024 2048
dropout 0.1 0.1 0.2 0.2 0.4

Total Params 12.4 M 26.8 M 64.3 M 181.6 M 658.9 M

Table 5: The list of hyperparameters in the fivemodel sizes of

HSTU, along with the total parameter counts. For 1B, we use

the same hyperparameters as TinyLlama as in the original

HLLM paper. However, the total number of parameters is

less than 1B due to the simplification of the feed-forward

blocks in HSTU.

Pixel8M. For HSTU, we filter out users with fewer than 50
interactions. For HLLM, we filter out users with fewer than 20
interactions.

• Settings: For HSTU, we use a context length (𝑇 ) of 50 and a
forecast horizon (𝜏 ) of 8. For HLLM, we use𝑇 = 10 and 𝜏 = 4
due to its higher computation cost.

• Modalities: Text inputs are “title”, “tag”, and “description”.
Images are rescaled to 224 × 224 pixels.

• Item Prior Details: Over 5% of all items are labeled with the
Miscellaneous tag, which appear to be unlabeled data that
can randomly come from any of the other tags. We have to
simply set all 8 binary features to be True for this tag. How-
ever, this also demonstrates the robustness of our method
to noise in the human prior. The resulting normalized fre-
quency distribution of the eight features is: Entertainment:
24.95%, Real life: 21.10%, Performance & Arts: 15.30%, Infor-
mational & Educational: 12.69%, Fictional character: 9.00%,
Music: 6.29%, Gaming: 6.89%, and Science & technology: 3.77%.
For example, the original tag “Food Production” is labeled
with Real life, Informational & Educational, and Entertain-
ment, while the original tag “Celebrities Mix” is labeled with
Real life, Entertainment, Performance & Arts.

MerRec. We select the user subset with over 2,000 interactions.
• Settings: For HSTU, we use a context length of 𝑇 = 400, and
for HLLM, we use 𝑇 = 50, both to predict one item ahead.

• Modalities: Text inputs are “c2_name” and “brand_name”.
EB-NeRD.We select the 44,968 users with over 512 interactions.
• Settings: 𝑇 = 50, 𝜏 = 8 for HSTU; 𝑇 = 24, 𝜏 = 4 for HLLM.
• Modalities: Text inputs are “title”, “subtitle”, and “topics”.
• Graph Construction Details: For the co-engagement graph,
we cap the contribution of highly active users by consider-
ing only their last 1000 interactions to prevent them from
dominating the graph structure. When running the Leiden
algorithm [32] (implemented via the igraph package), we
use modularity as the optimization objective and tune the
resolution parameter based on the desired number of clus-
ters. Small clusters falling below a size threshold are merged
into a single larger cluster.

For both HSTU and HLLM backbones, we use a discount factor
𝛾 = 0.99. However, we observed that a smaller 𝛾 might lead to
higher accuracy at the cost of lower diversity (Table 9).

HLLM Configurations. The choice of LLMs for HLLM depends
on the available modalities in the dataset. For Pixel8M, which con-
tains both text and images, we use Qwen2-VL-2B-Instruct as the
Item LLM and Qwen2.5-1.5B as the User LLM. For MerRec and EB-
NeRD, which only contain text, we use TinyLlama-1.1B-Chat-v1.0
as the Item LLM and TinyLlama_v1.1 as the User LLM.

HSTU Configurations. We experiment with various sizes of
the HSTU model, detailed in Table 5. For all datasets, we remap
product IDs based on the ones that still have been interacted with
after filtering. We report the results based on size 3 unless noted.

Baseline Configurations. For ComiRec and REMI, we use the
self-attention version, which demonstrates performance compa-
rable to the dynamic routing version, but with stabler and faster
training. We use a learning rate of 0.001, search the number of
interest from {1, 2, 4, 8, 16, 32}, and report the best performance. For
REMI, we tune the additional 𝛽 parameter for interest-aware hard
negative mining from {0.1, 1, 4, 10} and set routing regularization
weight 𝜆 to 100 following the original paper.

For DualVAE, we reimplement it under the window-wise se-
quential recommendation setting. We search the aspect number
from {4, 5, 10} and set the VAE latent dimension to 32. We search
dropout from {0.1, 0.15, 0.2}, 𝛾 (for contrastive loss) and 𝛽 (for KL-
divergence) from {1𝑒 − 3, 1𝑒 − 2, 1𝑒 − 1, 1}.

A.1 Additional Results

A.1.1 Case Studies. Figure 5 illustrates the qualitative benefits of
human priors using the Pixel8M dataset. We analyze the predictions
of the HLLM backbone, which leverages both text and image modal-
ities6, configured with LT/ST2 and Item Prior, compared against
the baseline HLLM.

The user history (Rows 1-2) lacks videos in “Informational &
Educational”, but indicates a latent user interest in military and
geopolitics, since they include clips from theWWII movie Downfall,
a game on evolution under nuclear waste, and a meme on “atomic
egg explosion”. The baseline HLLM (Row 4) struggles to synthesize
this nuanced intent. Even after filtering to the “Informational &
Educational” category, it produces generic recommendations. In
contrast, our proposed model demonstrates effective specializa-
tion (Row 5). The adapter head dedicated to the Long-Term interest
within the “Informational & Educational” prior successfully cap-
tures the user’s latent interest, recommending the revival of the
Soviet Union and Russian territorial waters. The better recommen-
dation quality is validated by the target items (Row 3). Starting from
the second target item, the user engaged with content on the Soviet
Union, which was successfully predicted by our model, and the
Second Sino-Japanese War. This shows that dedicating a specialized
head to model underrepresented categories effectively discovers
the user’s hidden interests, which the baseline overlooked.

A.1.2 How to Structure? When multiple priors are available, the
composition strategy significantly impacts performance. We com-
pare three strategies: Additive, Multiplicative, and Hierarchical.
6Video descriptions are omitted in Figure 5 due to space constraints.
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Figure 5: A case study on Pixel8M. Rows 1-2: browsing history.

Row 3: ground truth target items. Row 4: HLLM baseline

predictions (filtered to “Informational & Educational”). Row

5: predictions from our model’s long-term “Informational &

Educational” head.

Additive Composition learns heads for each prior dimension inde-
pendently. A head specializes in a single prior while remaining
agnostic to others (e.g., a category-specific head optimizes for that
category regardless of time horizon). Multiplicative Composition
defines a distinct head for every element in the Cartesian product
of the priors. Each head is derived independently from h𝑇 using
Eq. (2). We evaluate these strategies on Pixel8M using Item and
Temporal Priors, applied to the HSTU backbone across five model
sizes.
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Figure 6: Comparison of composition strategies on Pixel8M

across different HSTU model sizes.

Figure 6 shows all three strategies outperform the baseline (no
priors). Hierarchical Composition consistently achieves the best re-
sults across all model sizes. Despite similar parameter complexity

to Multiplicative, the Hierarchical structure yields superior perfor-
mance. Specifically, Multiplicative treats the (A, B) head and the (A,
C) head as completely independent entities, failing to leverage their
shared “A” context. This causes data fragmentation and poor gen-
eralization, especially for rare prior combinations. This highlights
the effectiveness of structural regularization and the inductive bias
imposed by sequential adapters (Eq. (5)). Similar trends hold for the
HLLM backbone (Table 8).

A.1.3 Why it works: priors or just more heads? We answer two
questions using Pixel8M while keeping the backbone and the num-
ber of heads fixed. First, do gains stem from human priors or simply
more heads?We compare human priors against: (i)Random - items
are assigned to heads uniformly at random, and (ii) All - each item
is assigned to all heads.

Second, how to fuse the scores from different heads for each
item candidate at inference time? Let 𝑠ℎ (𝑖) be the score of item 𝑖

from head ℎ ∈ H (𝑖) (the heads that are responsible for item 𝑖). We
compare average and maximum fusion:

𝑆avg (𝑖) =
1

|H (𝑖) |
∑︁

ℎ∈H(𝑖 )
𝑠ℎ (𝑖), 𝑆max (𝑖) = max

ℎ∈H(𝑖 )
𝑠ℎ (𝑖) .

Table 6 shows Random underperforms the baseline, since simply
adding more heads without meaningful partitions only decreases
the amount of data to train each head. All improves modestly over
LT/ST1, confirming the benefits of simply having more heads, yet
it trails human priors (LT/ST8 or Item).

Regarding fusion, average fusion might seem more natural, as
commonly done in an ensemble, whereas maximum fusion might
lead to overly optimistic estimates, similar to the value overestima-
tion issue in off-policy reinforcement learning [17]. In fact, average
fusion on the random/all prior variant, or only Temporal Prior,
performs better than maximum fusion. However, maximum fusion
is better for Item Prior, in terms of both NDCG/recall and diversity.
The reason might be each head evaluates whether the item can-
didate is a good fit under different criteria (e.g., item category or
action type), similar to multi-interest networks [4, 18], while heads
in random/all or Temporal Prior evaluate on more similar criteria.
Future work may consider aggregating the scores hierarchically
according to the nature of the prior type, and using inverse variance
weighting to upweight more certain heads.

A.1.4 Long-Term vs. Short-Term Interests. We study the generaliza-
tion of LT/ST interests by training with 𝜏 = 4 and evaluating on
𝜏 ∈ {1, 4, 8} (Table 7). For brevity, we report average gains over the
baseline (next target prediction) across the eight metrics; full results
are in Table 8. All variants surpass the baseline at 𝜏 = 4, with bene-
fits growing when we evaluate at 𝜏 = 8. At 𝜏 = 1, we only evaluate
on the next one item as the target item, which is the same training
objective as the baseline and only focuses on the short-term inter-
est. Even under such a setting, modeling long-term interest causes
only a minor performance drop, which diminishes with more seg-
ments and disappears once we add Item Prior. Finally, adding Item
Prior consistently boosts performance over LT/ST alone, suggesting
different human priors can be complementary.

Next, we show that the benefit of LT/ST interests is consistent
across different model sizes of HSTU (Figure 7). Here, we train on
𝜏 = 8 using only the LT/ST prior. The baseline is only trained to
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Table 8: HLLM results on Pixel8M with evaluation horizon

𝜏 = 8. With multiple human priors, enforcing a hierarchical
composition (Hier) yields the best Recall (R@K) and NDCG

(N@K) while maintaining diversity (H@K). A multiplicative
composition (Mult) maximizes H but underperforms on Re-

call/NDCG as it lacks explicit structure.

HLLM Variants R@10 N@10 𝐻@10

No Prior 1.358 1.422 2.124
LT/ST1 1.464 1.523 2.126
LT/ST1 + Item 1.479 1.543 2.193
LT/ST2 1.442 1.496 2.121
LT/ST2 + Item (Mult) 1.441 1.496 2.223

LT/ST2 + Item (Add) 1.467 1.524 2.193

LT/ST2 + Item (Hier) 1.499 1.559 2.208

Table 9: Ablation studies on the training objective. We report

Recall (R@10), NDCG (N@10), and Entropy (𝐻@10). The best

results within each section are highlighted in bold.

Ablation R@10 N@10 𝐻@10

Full Model (𝛾 = 0.99) 2.000 2.099 2.3728
w/o in-group negative sampling 1.642 1.700 2.6395
w/o frequency balancing 1.928 2.005 2.4234

Discount Factor 𝛾
𝛾 = 1.0 2.000 2.084 2.3773
𝛾 = 0.95 2.033 2.113 2.3768
𝛾 = 0.9 2.045 2.130 2.3727
𝛾 = 0.8 2.062 2.143 2.3768
𝛾 = 0.7 2.065 2.155 2.3773
𝛾 = 0.6 2.025 2.110 2.3810
𝛾 = 0.5 2.017 2.098 2.3818

Table 6: Head assignment vs. fusion on Pixel8M. Baseline

here is LT/ST1.

Recall (%) NDCG (%) Entropy (𝐻 )

Prior Fusion @10 @50 @10 @50 @10 @50

Baseline — 1.655 4.534 1.726 2.977 2.303 2.461

Random Max 1.586 4.377 1.648 2.861 2.308 2.462
Avg 1.602 4.417 1.670 2.893 2.307 2.463

All Max 1.671 4.559 1.741 2.996 2.296 2.457
Avg 1.672 4.560 1.743 2.998 2.301 2.460

LT/ST8
Max 1.878 5.251 1.937 3.403 2.296 2.455
Avg 1.950 5.338 2.028 3.501 2.303 2.457

Item Max 1.749 4.695 1.834 3.115 2.371 2.515

Avg 1.738 4.663 1.825 3.097 2.335 2.489

12.4 26.8 64.3 181.6 658.9
Number of Parameters (M)

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

N
D

C
G

@
5

12.4 26.8 64.3 181.6 658.9
Number of Parameters (M)

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

N
D

C
G

@
10

No Prior LT/ST1 LT/ST2 LT/ST4 LT/ST8

Figure 7: Sensitivity to the number of segments in Temporal

Prior across different HSTU sizes.

Variant 𝜏 = 1 𝜏 = 4 𝜏 = 8

LT/ST1 -3.07% 6.95% 7.72%
LT/ST1 + Item -1.23% 7.95% 8.34%
LT/ST2 -2.68% 5.74% 6.71%
LT/ST2 + Item 0.25% 9.72% 10.36%
LT/ST4 + Item 0.04% 8.58% 9.07%

Table 7: Average gain over the baseline HLLM (w/o prior)

across eight metrics. We train the model on 𝜏 = 4, and show

its robustness when evaluated on 𝜏 = 1, 4, 8.

predict the next one item, while LT/ST1 means that we only model
one interest, and the objective reduces to the simple discounted loss
over the next 𝜏 items.We see that explicitly assigning more different
heads to model the long-term vs. short-term interests brings more
improvements as we go from the baseline to seg = 2, and then
the benefit from further increasing the number of segments slowly
diminishes. We observe a slight dip from size4 to 1b, and our
hypothesis is that the number of target items used to train each head
decreases when the number of interests increases. Nevertheless,
the benefit of separately modeling the long-term and short-term
interests is still significant at the scale of 1b, where the performance
gain of the baseline model from increasing the model size has
already flattened out at this scale.

A.1.5 Ablations on Training Objective. We ablate three key compo-
nents of our training objective (Section 3.4): 1) in-group negative
sampling, 2) frequency balancing, and 3) the temporal discount
factor 𝛾 . Table 9 shows the results.

First, removing in-group negative sampling (i.e., sampling from
all prior groups) and frequency balancing sharply reduces Recall
and NDCG. Specifically, removing in-group sampling causes R@10
to drop significantly from 2.000 to 1.642. This validates the impor-
tance of these mechanisms for learning effective representations
and handling data imbalance.

The impact of the temporal discount factor 𝛾 is more nuanced.
Both Recall and NDCG peak at 𝛾 = 0.7. Interestingly, the entropy 𝐻
initially decreases as𝛾 decreases from 1.0 to 0.9, while Recall/NDCG
increases. However, beyond𝛾 = 0.9, the entropy𝐻 instead increases
alongside Recall/NDCG until they reach their peak at 𝛾 = 0.7. This
observation is intriguing because it suggests that, even for the same
architecture, higher accuracy (Recall/NDCG) does not necessarily
imply lower diversity (Entropy). Furthermore, the optimal 𝛾 = 0.7
is notably different from the values typically used in reinforcement
learning, which range from 0.9 to 0.995.
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