
Ensuring User-side Fairness in Dynamic Recommender Systems

Hyunsik Yoo

University of Illinois

Urbana-Champaign

hy40@illinois.edu

Zhichen Zeng

University of Illinois

Urbana-Champaign

zhichenz@illinois.edu

Jian Kang

University of Rochester

jian.kang@rochester.edu

Ruizhong Qiu

University of Illinois

Urbana-Champaign

rq5@illinois.edu

David Zhou

University of Illinois

Urbana-Champaign

david23@illinois.edu

Zhining Liu

University of Illinois

Urbana-Champaign

liu326@illinois.edu

Fei Wang

Amazon.com, Inc.

feiww@amazon.com

Charlie Xu

Amazon.com, Inc.

caizhx@amazon.com

Eunice Chan

University of Illinois

Urbana-Champaign

ecchan2@illinois.edu

Hanghang Tong

University of Illinois

Urbana-Champaign

htong@illinois.edu

ABSTRACT

User-side group fairness is crucial for modern recommender sys-

tems, alleviating performance disparities among user groups de-

fined by sensitive attributes like gender, race, or age. In the ever-

evolving landscape of user-item interactions, continual adaptation

to newly collected data is crucial for recommender systems to

stay aligned with the latest user preferences. However, we observe

that such continual adaptation often worsen performance dispari-

ties. This necessitates a thorough investigation into user-side fair-

ness in dynamic recommender systems. This problem is challeng-

ing due to distribution shifts, frequent model updates, and non-

differentiability of ranking metrics. To our knowledge, this paper

presents the first principled study on ensuring user-side fairness in

dynamic recommender systems. We start with theoretical analyses

on fine-tuning v.s. retraining, showing that the best practice is incre-

mental fine-tuning with restart. Guided by our theoretical analyses,

we propose FAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAir DDDDDDDDDDDDDDDDDynamic rEEEEEEEEEEEEEEEEEcommender (FADE), an end-to-end

fine-tuning framework to dynamically ensure user-side fairness

over time. To overcome the non-differentiability of recommenda-

tion metrics in the fairness loss, we further introduce Differentiable

Hit (DH) as an improvement over the recent NeuralNDCG method,

not only alleviating its gradient vanishing issue but also achieving

higher efficiency. Besides that, we also address the instability issue

of the fairness loss by leveraging the competing nature between

the recommendation loss and the fairness loss. Through extensive

experiments on real-world datasets, we demonstrate that FADE ef-

fectively and efficiently reduces performance disparities with little

sacrifice in the overall recommendation performance.
1

1
The code is available at: https://github.com/hsyoo32/fade.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’24, May 13–17, 2024, Singapore, Singapore.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0171-9/24/05. . . $15.00

https://doi.org/10.1145/3589334.3645536

CCS CONCEPTS

• Information systems→ Data mining; • Computing method-

ologies→ Machine learning.

KEYWORDS

recommender systems; user-side fairness; dynamic updates

ACM Reference Format:

Hyunsik Yoo, Zhichen Zeng, Jian Kang, Ruizhong Qiu, David Zhou, Zhining

Liu, FeiWang, Charlie Xu, Eunice Chan, andHanghang Tong. 2024. Ensuring

User-side Fairness in Dynamic Recommender Systems. In Proceedings of the
ACM Web Conference 2024 (WWW ’24), May 13–17, 2024, Singapore. ACM,

New York, NY, USA, 20 pages. https://doi.org/10.1145/3589334.3645536

1 INTRODUCTION

Recommender systems are essential for delivering high-quality per-

sonalized recommendations in a two-sided market (i.e., user-side

and item-side) [8, 42, 48]. In this market, users provide feedback on

recommended items, and the system refines the recommendations

to better reflect their preferences. However, these recommender

systems can perform poorly for users from certain demographic

groups even while delivering high-quality recommendations on

average [5, 39]. For example, a job recommender system might rec-

ommend more irrelevant job opportunities to female engineers in

STEM (Science, Technology, Engineering, and Mathematics), which

can significantly impact their career growth [14, 19]. Thus, it is

important to alleviate the performance disparity between different

user groups in recommender systems [20].

Although there is a parallel line of research on item-side fair-

ness, those methods do not apply to user-side fairness due to the

fundamental distinction between user- and item-side fairness. In

essence, user-side fairness is concerned with ensuring equitable

recommendation quality for different users, while item-side fairness

focuses on providing equal exposure opportunities for items within

recommendations, often addressing the so-called popularity bias

of items through debiasing techniques. For example, several works

for item-side fairness [34, 35, 46, 47] calibrates predicted ratings

with item popularity, which does not apply to user-side fairness.

Furthermore, due to the evolving nature of user-item interactions,

real-world recommender systems continually adapt to new data

https://github.com/hsyoo32/fade
https://doi.org/10.1145/3589334.3645536
https://doi.org/10.1145/3589334.3645536

WWW ’24, May 13–17, 2024, Singapore, Singapore. Hyunsik Yoo et al.

Pretrain Finetune FADE

0 1 2 3 4 5 6

0.70

0.75

0.80

0.85

Time period

P
e
r
f
o
r
m
a
n
c
e

0 1 2 3 4 5 6

0

1

2

3

·10−2

Time period

D
i
s
p
a
r
i
t
y

(a) Recommendation performance over time (b) Performance disparity between user groups

Figure 1: Even though incremental fine-tuning with new data

(red curve) upholds recommendation performance compared

to pretrain (black curve), the disparity gradually expands

over time without fairness regularization. (See §4 for detail.)

over time to improve recommendation quality [17, 44]. However,

as shown in Fig. 1, neglecting fairness during dynamic adaptation

leads to performance disparity between user groups persisting

or even expanding over time. This highlights the importance of

maintaining user-side fairness in dynamic recommendation.

Despite its critical importance, to the best of our knowledge,

user-side fairness [10, 20] has not been explored in the context of

dynamic recommendation, which is in stark contrast to the exten-

sive research effort on item-side fairness in dynamic recommenda-

tion [11, 26, 46]. As item-side methods are inapplicable to user-side

fairness, a thorough study of user-side fairness in dynamic recom-

mendation will substantially expand the frontiers of fair dynamic

recommendation and establish a prospective foundation for future

research on two-sided fairness [7, 43] in dynamic recommendation.

This paper presents the first principled study of user-side fairness
in dynamic/continual recommender systems. We identify and ad-

dress the following challenges: (C1) Distribution shifts. Constant

emergence of new users/items and evolving user preferences lead

to distribution shifts. Distribution shifts not only affects recommen-

dation performance but also worsens performance disparity among

user groups over time. (C2) Frequent model updates. Due to dis-

tribution shifts in dynamic recommendation, recommender systems

need frequent updates to cater to current user preferences. This

imposes efficiency requirements on the model updating method.

However, existing postprocessing methods involve time-intensive

re-ranking [10, 20], which are inefficient for frequent model updates.

(C3) Non-differentiability of ranking metrics. The sorting op-

eration in ranking metrics is non-differentiable. This raises a critical

challenge in end-to-end training because we cannot directly use the

non-differentiable performance disparity as the fairness loss. Even

if one resorts to postprocessing methods like re-ranking [10, 20]

which does not involve end-to-end training, they critically suffer

from the existing performance disparity in candidate item lists.

To address the challenges, we propose FAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAir DDDDDDDDDDDDDDDDDynamic rEEEEEEEEEEEEEEEEEcommender

(FADE), an end-to-end framework employing an incremental fine-
tuning strategy to dynamically alleviate performance disparity be-

tween user groups. Specifically, our key contributions are:

• Problem.We observe that the user-side performance disparity

tends to persist or worsen over time, despite improvements in rec-

ommendation performance. To our knowledge, we are the first to

study user-side fairness in dynamic/continual recommendation.

• Theory. To ground the design of our method, we theoretically

analyze fine-tuning v.s. retraining in terms of generalization er-

ror (recommendation & fairness) under distribution shifts. Our

Theorems 3.1 & 3.2 show that the best practice is incremental

fine-tuning with restart.

• Algorithm. Based on theoretical analyses, we propose FADE, a
novel dynamic recommender based on incremental fine-tuning

that balances both recommendation quality and user-side fairness.

To overcome the non-differentiability of recommendationmetrics

in the fairness loss, we further introduce Differentiable Hit (DH)
as an improvement over the recent NeuralNDCG method [28],

not only alleviating its gradient vanishing but also achieving

higher efficiency. Besides that, we also address the instability of

the fairness loss by leveraging the competing nature between the

recommendation loss and the fairness loss (Proposition 3.3).

• Experiments. Empirical experiments on real-world datasets

demonstrate that FADE effectively reduces performance disparity

(average decrease of 48.91%) without significantly compromising

overall performance over time (average drop of 2.44%).

2 PROBLEM DEFINITION

In this section, we first present the key notations in the paper. Then

we provide preliminaries on the settings of dynamic recommenda-

tion and user-side fairness. Finally, we formally define the problem

of user-side fairness in dynamic recommender systems.

Notations. Table 1 provides a list of our symbols. We use D𝑡 =

{U𝑡 ,I𝑡 , E𝑡 ,Y𝑡 } to denote the dataset collected at time period 𝑡 ∀𝑡 ∈
{1, . . . ,𝑇 }, 2 where the subscript 𝑡 indicates the time period 𝑡 ,U𝑡
is the user set, I𝑡 is the item set, E𝑡 is the user-item interaction

set, and Y𝑡 is the user-item interaction matrix. We consider binary

user-item interaction in this work, i.e., Y𝑡 [𝑢, 𝑖] = 1 if user 𝑢 has

interacted with item 𝑖 within the 𝑡-th time period, and 0 otherwise.

The initial user set, item set, user-item interaction set, and the user-

item interaction matrix before the first time period (i.e., pretrain

data) is denoted as U0, I0, E0, and Y0, respectively. Lastly, we
denote the subscript :𝑡 as time period from the beginning up to 𝑡 .

Dynamic/online recommendation.We assume that an initial rec-

ommendationmodel has been pre-trainedwithD0 = {U0,I0, E0,Y0}
in an offline manner, and then the model is trained solely with

the newly collected data D𝑡 at the current time period 𝑡, ∀𝑡 ∈
{1, . . . ,𝑇 }. Once the model has been trained/fine-tuned on D𝑡 , a
top-𝐾 recommendation list [𝑖1, . . . , 𝑖𝐾] for each user 𝑢, ranked by

the predicted scores Ŷ𝑡 [𝑢, 𝑖],∀𝑖 , is generated.
User-side fairness. Given a binary sensitive attribute 𝑎 ∈ {0, 1}
(e.g., gender), we focus on ensuring user-side group fairness, i.e.,

mitigate the recommendation performance disparity between the

advantaged user group (𝑎 = 0) and the disadvantaged user group

(𝑎 = 1) [20]. More specifically, the user-side performance disparity

at any time period 𝑡 is defined as follows.

Definition 1 (User-side performance disparity [20]). For a time
period 𝑡 with ground-truth test interaction set Dtest

𝑡 and for a recom-
mendation metric Perf (·) (such as NDCG@𝐾 or F1@𝐾), the user-
side performance disparity is defined by

PD𝑡 := Perf (Dtest

𝑡 | 𝑎 = 0) − Perf (Dtest

𝑡 | 𝑎 = 1) . (1)

Problem definition.We formally define our problem as follows:

Problem 1 (User-side fairness in dynamic recommender sys-

tems). Input: (1) a pre-trained recommendation model with parame-
tersW0; (2) a continually collected datasetD𝑡 = {U𝑡 ,I𝑡 , E𝑡 ,Y𝑡 },∀𝑡 ∈

2
Depending on the system, the time period could be either a specific time frame

(e.g., daily or weekly) or until a specific number of interactions has been collected.

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore, Singapore.

{1, . . . ,𝑇 }; (3) a binary sensitive attribute 𝑎 ∈ {0, 1}; (4) a specific
performance evaluation metric Perf(·) to calculate PD𝑡 (see Eq. (1)).

Output: For any time period 𝑡 , a fairness-regularized model with
the parametersW𝑡 that (1) optimizes the PD𝑡 to be close to zero and
(2) achieves high-quality recommendations.

3 FADE: A FAIR DYNAMIC RECOMMENDER

In this section, we present FADE, a novel fair dynamic recommender

system designed to effectively and efficiently reduce performance

disparity over time. We begin with theoretical analyses on fine-

tuning v.s. retraining in the context of dynamic fair recommenda-

tion in §3.1, demonstrating that the best practice is incremental fine-

tuning with restart. Then in §3.2, we introduce our incremental fine-

tuning strategy that balances both recommendation performance

and user-side fairness. To address the non-differentiability chal-

lenge, we improve NeuralNDCG [28] and develop Differentiable Hit
(DH), an efficient approximation scheme of the non-differentiable

ranking metric, in §3.3. Building upon DH, we propose a differen-

tiable and lightweight loss function for user-side fairness in §3.4.

Our method is presented in Algorithm 1.

3.1 Fine-Tuning v.s. Retraining

Common practice for evolving data involves incremental fine-tuning
and retraining. To obtain a deeper understanding of their behaviors

in fair dynamic recommendation to guide the design of our method,

we theoretically analyze their generalization error (recommenda-

tion & fairness) under distribution shift. Suppose that the model is

currently trained withD0 ∪ · · · ∪D𝑡te−1 and is to be tested onD𝑡te .
For each time period 𝑡 , let𝑚𝑡 := |E𝑡 | denote the size of dataset D𝑡 ,
let LD𝑡 (W) denote the empirical loss (recommendation + fair-

ness (e.g., Eq. (7))) over dataset D𝑡 , let L𝑡 (W) := ED𝑡 [LD𝑡 (W)]
denote the true generalization loss, and let L∗𝑡 := infW L𝑡 (W)
denote the optimal loss value. To obtain concrete yet non-trivial

theoretical results, we let𝑚1 = · · · =𝑚𝑡te−1 ≪𝑚0 and make mild

and realistic assumptions for theoretical analysis (see §A.1).

Next, we introduce our theoretical measure of distribution shift.

There are two sources of distribution shift over time: covariate shift
and concept drift. In dynamic recommendation, covariate shift corre-

sponds to shift of user/item attribute distributions (i.e., the distribu-

tion of (U𝑡 ,I𝑡 , E𝑡)), and concept drift corresponds to evolution of

user preferences (i.e., the conditional distribution Y𝑡 | (U𝑡 ,I𝑡 , E𝑡)).
Regarding covariate shift, a classic measure is the discrepancy

distance [24] (a generalizedHΔH distance [3]):

𝑑HΔH
𝑡,𝑡te

:= sup

W,W′

��|L𝑡 (W)−L𝑡 (W′) | − |L𝑡te (W)−L𝑡te (W′) |��. (2)
The intuition is that if there is no covariate shift between 𝑡 and 𝑡te,

then for any two modelsW,W′, their difference of L should not

differ between 𝑡 and 𝑡te, leading to 𝑑
HΔH
𝑡,𝑡te

= 0. Regarding concept

drift, we use a classic measure called combined error [3]:

𝑑comb

𝑡,𝑡te
:= inf

W

(
L𝑡 (W) + L𝑡te (W)

)
− L∗𝑡 − L∗𝑡te . (3)

The intuition is that if there is no concept drift between 𝑡 and 𝑡te,

then L𝑡 and L𝑡te can achieve their minimum values with the same

modelW, leading to 𝑑comb

𝑡,𝑡te
= 0. Together, we define a unified

measure of distribution shift as follows by combining the measures

Table 1: Main symbols used in this paper.

Symbol Description

D𝑡 Dataset collected at time period 𝑡

U𝑡 , I𝑡 , E𝑡 Sets of users, items, and their interactions at time period 𝑡

Y𝑡 User-item interaction matrix at time period 𝑡

Ŷ𝑡 User-item predicted score matrix at time period 𝑡

W𝑡 Set of model parameters at time period 𝑡

𝑎 Binary sensitive attribute of a user

Lrec, Lfair
Recommendation loss and fairness loss, respectively

C𝑢 , 𝑁 Set of candidate items for a user 𝑢 and its size

s𝑢 Unsorted list of recommendation scores of items in C𝑢
r𝑢 List of items in C𝑢 ranked by their scores in s𝑢

P𝑢 , P̂𝑢 Permutation matrix and relaxed permutation matrix for s𝑢
𝜆 Scaling parameter for L

fair

𝜏 Temperature parameter for P̂s𝑢
𝜇 The number of negative items in C𝑢
𝑛 The number of negative items for Lrec

of covariate shift and concept drift:

𝑑𝑡,𝑡te := 𝑑
HΔH
𝑡,𝑡te

+ 𝑑comb

𝑡,𝑡te
. (4)

Building upon the measure of distribution shift, we theoretically

analyze the generalization error (recommendation performance &

user-side fairness) of fine-tuning and retraining in the presence of

distribution shift (Theorems 3.1 & 3.2).

Theorem 3.1 (Fine-tuning). Let Lft

𝑡te
denote the best possible

loss of fine-tuning tillD𝑡te−1. Suppose that the number of fine-tuning
epochs at each time period 𝑡 ≥ 1 is decided according to the proximity
assumption [31] with some 0 < 𝛾 < 1 (see §A.1 for detail). Then with
probability at least 1 − 𝛿 ,

Lft

𝑡te
≤L∗𝑡te +

(1−𝛾)
(
2

𝑡
te
−1∑

𝑡=0
𝛾𝑡te−𝑡−1𝑑𝑡,𝑡

te
+ 4

√︄(
𝛾2𝑡te−2
𝑚

0

log𝑚
0

+ 1−𝛾2𝑡te−2

(1−𝛾2) 𝑚
1

log𝑚
1

)
log

2

𝛿

)
1−𝛾𝑡te .

(5)

Theorem 3.2 (Retraining). Let Lrt

𝑡te
be the best possible loss of

retraining on D0 ∪ · · · ∪ D𝑡te−1. With probability at least 1 − 𝛿 ,

Lrt

𝑡te
≤ L∗𝑡te +

2𝑚0𝑑0,𝑡
te
+2
𝑡
te
−1∑

𝑡=1
𝑚1𝑑𝑡,𝑡

te

𝑚0+(𝑡te−1)𝑚1

+ 4
√︂

log𝑚0

𝑚0+(𝑡te−1)𝑚1

log
2

𝛿
. (6)

Proofs are in §A.2. Theorems 3.1 & 3.2 point out two sources of

generalization error: (i) distribution shift in terms of 𝑑𝑡,𝑡te and (ii)

learning error due to the finite dataset size𝑚𝑡 . Regarding distribu-

tion shift, since larger time differences typically result in larger dis-

tribution shifts, we have 𝑑0,𝑡te > 𝑑1,𝑡te > · · · > 𝑑𝑡te−1,𝑡te Fine-tuning
can exponentially shrink (via the 𝛾𝑡te−𝑡−1 factor) the influence of
distribution shift while retraining suffers from greater influence

of distribution shift. This is consistent with our intuition since re-

training treats old and new data equally while fine-tuning pays

more attention to newer data. This suggests that we should use

fine-tuning to mitigate the impact of distribution shift. Meanwhile,

when 𝑡te is large, fine-tuning’s learning error
(1−𝛾)2

(1−𝛾2) 𝑚
1

log𝑚
1

can be

greater than retraining’s
log𝑚0

𝑚0+(𝑡te−1)𝑚1

because𝑚1 ≪𝑚0. This sug-

gests that the performance of dynamically fine-tuned model will

WWW ’24, May 13–17, 2024, Singapore, Singapore. Hyunsik Yoo et al.

eventually degrade after a number of periods, which is consistent

with our empirical observation (refer to Fig.10 in §B.3).

Therefore, to leverage the benefits of fine-tuning without sacri-

ficing performance, it is advisable to fine-tune the model for certain

periods 𝑇 until performance degradation is observed, then retrain

the model from scratch and resume the fine-tuning process.

3.2 Incremental Fine-Tuning Strategy

Building upon our theoretical analysis on (C1) distribution shifts

and for the sake of (C2) time-efficiency, FADE fine-tunes the

model parameters incrementally over time only with the new data

D𝑡 collected at 𝑡 . We optimize the following loss functions:

LD𝑡 := LD𝑡
rec
+ 𝜆LD𝑡

fair
, (7)

where Lrec is for improving the recommendation performance,

L
fair

is for regularizing the performance disparity between the dis-

advantaged and advantaged groups, and 𝜆 is the scaling parameter

for controlling the trade-off between the recommendation perfor-

mance and the fairness. In this paper, we use the classic Bayesian

personalized ranking (BPR) loss [32] as Lrec, i.e.,

LD𝑡
rec

:= − 1

|E𝑡 |
∑︁

(𝑢,𝑖) ∈E𝑡

1

|N𝑢𝑖 |
∑︁

𝑖′∈N𝑢𝑖
log(𝜎 (𝑠𝑢𝑖 − 𝑠𝑢𝑖′)), (8)

where 𝜎 (·) is the sigmoid function, and N𝑢𝑖 is a set of sampled

negative items for 𝑢. Note that this loss can be replaced with any

differentiable recommendation loss that can be optimized by gradi-

ent descent. We will define L
fair

in §3.4.

By jointly optimizing Lrec and Lfair
in an end-to-end fashion to

fine-tune the model parameters for each time period, we can dy-

namically and efficiently reduce the performance disparity, which

may otherwise worsen as the optimization continues, while simul-

taneously accurately preserving the user preferences over time.

3.3 Differentiable Hit

Most evaluationmetrics for top-𝐾 recommendations, such as NDCG@𝐾 ,

are not differentiable due to their reliance on the ranking/sorting op-

eration of items. As discussed in §1, this (C3) non-differentiability

presents a challenge when optimizing fairness measures, specif-

ically performance disparity, using gradient descent algorithms.

To overcome this challenge, several soft ranking losses have been

proposed to directly optimize relaxed ranking metrics [4, 28, 30].

NeuralNDCG [28] is a recent work on differentiable approximation

of ranking metrics. However, due to the use of the Sinkhorn algo-

rithm, NeuralNDCG may lead to the gradient vanishing issue and

also poses (C2) time-inefficiency. To address these limitations, we

propose Differentiable Hit, a function that is not only effective but

also more lightweight than existing methods, making it well-suited

for dynamic recommendation.

First, let us define a standard Hit function. Suppose a score vector
s𝑢 = [𝑠𝑢1, 𝑠𝑢2, . . . , 𝑠𝑢𝑁]T for a user 𝑢 represents the “unsorted” list
of recommendation scores (i.e., 𝑠𝑢𝑖 = Ŷ𝑡 [𝑢, 𝑖]) of 𝑁 candidate items
in a set C𝑢 (with |C𝑢 | = 𝑁), a vector r𝑢 represents the “sorted” list
of items ranked in the descending order by their scores in s𝑢 , and
r𝑢 [𝑘] represents the 𝑘-th ranked item.

With the above definitions, we can define the Hit function,

Hit(C𝑢 ;𝑘) for 𝑘 ∈ {1, . . . , 𝐾}, which indicates whether the 𝑘-th

ranked item r𝑢 [𝑘] is 𝑢’s ground-truth item, as follows:

Hit(C𝑢 ;𝑘) :=
{
1 if Y𝑡 [𝑢, r𝑢 [𝑘]] = 1,

0 if Y𝑡 [𝑢, r𝑢 [𝑘]] = 0.
(9)

Here, the sorting operation used to produce the r𝑢 , which can also

be represented as a permutation matrix, renders the Hit𝑢 (𝑘) non-
differentiable. However, we can overcome this limitation by using

the continuous relaxation for permutation matrices to approximate

the deterministic sorting operation with a differentiable continuous

sorting [12]. First, for the deterministic sorting, the permutation

matrix P𝑢 ∈ R𝑁×𝑁 is given by [12]:

P𝑢 [𝑘, 𝑗] :=
{
1 if 𝑗 = argmax[(𝑁 + 1 − 2𝑘)s𝑢 − A𝑢1],
0 otherwise,

(10)

where 1 is the column vector of all ones and A𝑢 is the absolute

distance matrix of s𝑢 with A𝑢 [𝑘, 𝑗] = |𝑠𝑢𝑘 − 𝑠𝑢 𝑗 |. For instance, if
we set 𝑘 = ⌊(𝑁 + 1)/2⌋, then the non-zero entry in the 𝑘-th row,

P𝑢 [𝑘, :], corresponds to the element with the minimum sum of

absolute distances to the other elements, and this corresponds to

the median element, as desired.

Then, the argmax operator is replaced by Gumbel-softmax [15]

to obtain a continuous relaxation of the permutation matrix; the

𝑘-th row of the permutation matrix is relaxed as follows [12]:

P̂𝑢 [𝑘, :] := softmax [((𝑁 + 1 − 2𝑘)s𝑢 − A𝑢1) /𝜏] , (11)

where 𝜏 is the temperature parameter, and P̂𝑢 approaches a permu-

tation matrix (i.e., Eq. (10)) when 𝜏 → 0
+
. Intuitively, each entry of

P̂𝑢 [𝑘, :] indicates the probability that the corresponding item will

be the 𝑘-th ranked item. Since P̂𝑢 is continuous everywhere and

differentiable almost everywhere w.r.t. the elements of s𝑢 , we can
define a differentiable Hit, as we elaborate below.

Since the𝑘-th row of the permutationmatrix P𝑢 [𝑘, :] (i.e., Eq. (10))
is equal to the one-hot vector of the 𝑘-th ranked item, we can re-

formulate the Hit function (i.e., Eq. (9)) as follows:

Hit(C𝑢 ;𝑘) = P𝑢 [𝑘, :] · Y𝑡 [𝑢, :]T, (12)

where Y𝑡 [𝑢, 𝑖] = 1 if the item 𝑖 is a ground-truth item, and 0 other-

wise. Finally, by replacing P𝑢 [𝑘, :] (Eq. (10)) with P̂𝑢 [𝑘, :] (Eq. (11)),
we define a Differentiable Hit (DH) as follows:

DH(C𝑢 ;𝑘) := P̂𝑢 [𝑘, :] · Y𝑡 [𝑢, :]T . (13)

Using DH as a building block, we can differentiably approximate

various top-𝐾 recommendation metrics. For example,

NDCG@𝐾 ≈ 1

|U𝑡 |
∑︁
𝑢∈U𝑡

1

maxDCG(C𝑢)

𝐾∑︁
𝑘=1

DH(C𝑢 ;𝑘)
log

2
(𝑘 + 1) , (14)

wheremaxDCG(C𝑢) is themaximumpossible value of

∑𝐾
𝑘=1

DH(C𝑢 ;𝑘)
log

2
(𝑘+1) ,

computed by decreasingly ordering 𝑖 ∈ C𝑢 by Y𝑡 [𝑢, 𝑖].

3.4 Fairness Loss

We design our fairness loss for reducing performance disparity

between the advantaged (𝑎 = 0) and disadvantaged (𝑎 = 1) user

groups. For the sake of training efficiency, we compose each candi-

date set with only 1 positive item and several negative items and

use differentiable Hit@1 in our fairness loss. Formally, for each

(𝑢, 𝑖) ∈ E𝑡 , we sample 𝜇 negative items N ′
𝑢𝑖
, compose a candidate

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore, Singapore.

Algorithm 1 Fine-tuning procedure at time period 𝑡

1: Input: Model parameters W𝑡−1, scaling parameter 𝜆, tem-

perature parameter 𝜏 , the number of negative items 𝑛 for

Lrec and 𝜇 for L
fair

, sensitive attribute 𝑎, incoming dataset

D𝑡 = {U𝑡 ,I𝑡 , E𝑡 ,Y𝑡 }
2: Output: Updated model parametersW𝑡

3: W𝑡 ←W𝑡−1;
4: for epoch do

5: for mini-batch B obtained from E𝑡 do
6: for user-item interaction (𝑢, 𝑖) ∈ B do

7: Sample 𝑛 negative items as N𝑢𝑖 ;
8: Sample 𝜇 negative items as N ′

𝑢𝑖
; C𝑢𝑖 ← {𝑖} ∪ N ′𝑢𝑖 ;

9: end for

10: Lrec← − 1

| B |
∑
(𝑢,𝑖) ∈B

1

|N𝑢𝑖 |
∑
𝑖′∈N𝑢𝑖log(𝜎 (𝑠𝑢𝑖 − 𝑠𝑢𝑖′));

11: DPD←
∑
(𝑢,𝑖) ∈{B|𝑎=0}DH(C𝑢𝑖 ;1)

| {B |𝑎=0} | −
∑
(𝑢,𝑖) ∈{B|𝑎=1}DH(C𝑢𝑖 ;1)

| {B |𝑎=1} | ;

12: L
fair
← − log(𝜎 (−DPD));

13: UpdateW𝑡 based on Lrec +𝜆Lfair
via gradient descent;

14: end for

15: end for

set C𝑢𝑖 := {𝑖} ∪ N ′𝑢𝑖 and use DH(C𝑢𝑖 ; 1) as a surrogate of the mea-

sure of recommendation quality for a user. While this differentiable

Hit@1 used for training encourages the top-1 recommendation, it

could also potentially benefit Hit@𝐾-based metrics. We will empir-

ically demonstrate that these settings consistently yield effective

results across various recommendation metrics that rely on the Hit

function. Based on DH, we define the differentiable performance

disparity (DPD) as follows:

DPD
D𝑡

:=

∑
(𝑢,𝑖) ∈{E𝑡 |𝑎=0}

DH(C𝑢𝑖 ; 1)

|{E𝑡 |𝑎 = 0}| −

∑
(𝑢,𝑖) ∈{E𝑡 |𝑎=1}

DH(C𝑢𝑖 ; 1)

|{E𝑡 |𝑎 = 1}| , (15)

which is an approximation of PD𝑡 in Eq. (1) on the sampled item

set. Then, a naïve fairness loss function is to minimize |DPD|:

LD𝑡
fair-abs

:= − log(𝜎 (−|DPDD𝑡 |)), (16)

where 𝜎 (·) is the sigmoid function. However, the non-smoothness

of L
fair-abs

will cause instability in training, as shown in our exper-

iment (Fig. 2). To address this limitation, we leverage the property

of the sigmoid function and surprisingly prove that removing the

absolute value operation | · | can still ensure fairness adaptively.

Formally, we propose the following fairness loss:

LD𝑡
fair

:= − log(𝜎 (−DPDD𝑡)) . (17)

Then, we have Proposition 3.3.

Proposition 3.3. Let W̃𝑡 :=W𝑡 − 𝜂∇W𝑡
(LD𝑡

rec
+ 𝜆LD𝑡

fair
) denote

a gradient descent step with learning rate 𝜂 > 0. Suppose that Lrec

causes unfairness (i.e., ⟨∇W𝑡
LD𝑡
rec
,∇W𝑡

DPD
D𝑡 ⟩ ≤ 0), and that the

fairness loss has influence (i.e., ∇W𝑡
LD𝑡
fair

≠ 0). Then, there exists
𝜆 ≥ 0 such that

sgn(DPDD𝑡(W𝑡)) · lim
𝜂→+0

DPD
D𝑡(W̃𝑡) − DPDD𝑡(W𝑡)

𝜂
≤ 0. (18)

In particular, if DPDD𝑡(W𝑡) ≤ 0, then DPD
D𝑡(W̃𝑡) ≥DPDD𝑡(W𝑡)

as 𝜂 → +0.

Proof is in §A.3. Intuitively, our L
fair

aims to benefit the dis-

advantaged user group (𝑎 = 1) over the advantaged group (𝑎 = 0).

Meanwhile, whenever DPD < 0, the influence of L
fair

will be re-

duced adaptively, so the unfair Lrec will push DPD back to zero.

3.5 Complexity Analysis

Our fairness loss only adds a constant amount of complexity to

most existing recommendation models. Assuming we employ MF-

BPR [32] as the base recommendation model with user/item embed-

dings of dimensionality 𝑑 , the time complexity of minimizing LD𝑡
rec

is O(|E𝑡 |𝑛𝑑), where 𝑛 represents the number of negative items.

Regarding our fairness loss, for each user interaction, computing

the score vector s𝑢 has a time complexity of O(𝜇𝑑), and computing

DH incurs O(𝜇2) time complexity due to computing P̂𝑢 [𝑘, :] (i.e.,
Eq. (11)), which involves computingA𝑢 ∈ R(𝜇+1)×(𝜇+1) . As a result,
the time complexity of minimizing LD𝑡

fair
becomes O(|E𝑡 | (𝜇2 + 𝜇𝑑)),

which can be approximated as O(|E𝑡 |𝜇𝑑) since 𝜇 ≪ 𝑑 . Therefore,

the time complexity of minimizing the recommendation loss, LD𝑡
rec

,

and the fairness loss, LD𝑡
fair

, are comparable.

4 EXPERIMENTS

We design experiments to answer the key research questions (RQs):

RQ1. How does learning new data affect model overall behavior?

RQ2. How effective is the fairness loss and fine-tuning in FADE?
RQ3. Does FADE outperform its fairness-aware competitors?

RQ4. How time-efficient is FADE?
RQ5. How effective/efficient is the Differentiable Hit in FADE?
RQ6. How sensitive is FADE to its hyperparameters?

4.1 Experimental Settings

4.1.1 Dataset. For experiments, we use two real-world recommen-

dation datasets from different domains.

• Movielens
3
: This dataset contains 836, 478 ratings on 3, 628movies

by 6, 039 users at different timestamps. The sensitive attribute

𝑎 is determined by the gender of each user, with male users as

𝑎 = 0 (adv.) and female users as 𝑎 = 1 (disadv.). This classification

is based on the observation that the dataset is male-dominated,

consisting of 4, 330 male users with 627, 933 training instances

and 1, 709 female users with 208, 545 training instances [22].

• ModCloth
4
[38]: This e-commerce dataset contains 83, 147 ratings

on 1, 014 items (i.e., women’s clothing) by 37, 142 users at different

timestamps. The sensitive attribute 𝑎 is determined by the body

shape of each user, with "Small" users as 𝑎 = 0 (adv.) and "Large"

users as 𝑎 = 1 (disadv.). The dataset is dominated by "Small" users,

comprising 28, 374 "Small" users with 66, 663 training instances

and 8, 768 "Large" users with 16, 484 training instances.

Following previous works in recommender systems [16, 45], we

binarize the 5-star ratings for both datasets. We set Y[𝑢, 𝑖] = 1 if

user𝑢 gives item 𝑖 a rating greater than 2, and Y[𝑢, 𝑖] = 0 otherwise.

To simulate dynamic settings defined in §2, we first sort the

interactions in the dataset in chronological order and use 60%/70%

of them as pre-training data, and 28%/21% as dynamically observed

3
https://grouplens.org/datasets/movielens/1m/

4
https://github.com/MengtingWan/marketBias

https://grouplens.org/datasets/movielens/1m/
https://github.com/MengtingWan/marketBias

WWW ’24, May 13–17, 2024, Singapore, Singapore. Hyunsik Yoo et al.

data for Movielenz/ModCloth. We then split the dynamically ob-

served data into 7 periods, each containing an equal number of

interactions. This process yields {D0,D1, . . . ,D𝑇 }, where 𝑇 = 7.

4.1.2 Compared methods. We use two base system including Ma-

trix Factorization (MF) and Neural Collaborative Filtering (NCF),

both with the Bayesian Personalized Ranking (BPR) loss [32]. In

this setup, we aim to validate the effectiveness of our fine-tuning
strategy and the fairness loss used in FADE in ensuring high recom-

mendation quality and user-side fairness over time. To establish a

benchmark, we compare FADEwith the following six combinations:

• Pretrain/Pretrain-Fair: The static model pre-trained onD0 w/o

and w/ the fairness loss, respectively.

• Retrain/Retrain-Fair: Fully retraining the model using the ac-

cumulated historical data D:𝑡 at each time period 𝑡 , w/o and w/

the fairness loss, respectively.

• Finetune/FADE-Abs: Fine-tuning the model based on the current

D𝑡 at each 𝑡 , w/o the fairness loss and w/ the (naïve) fairness

loss L
fair-abs

that uses |DPD| (Eq. (16)), respectively.
In addition, we also compare FADEwith the other fairness-aware

competitors. To ensure a fair comparison, we implemented these

methods with a fine-tuning strategy, even though they were origi-

nally not based on fine-tuning. The competitors we consider are:

• Adver [21]: This method is based on adversarial learning tech-

nique. It is originally designed to filter out sensitive attributes

from user embeddings, but its primary focus is not on reducing

the performance disparity among different user groups.

• Re-rank [20]: This method is a fairness-constrained re-ranking

approach. At each time period, a fine-tuned base model generates

recommendation lists, which are used as the basis for generating

new fair recommendation lists using this method.

4.1.3 Evaluation tasks. To evaluate the recommendation perfor-

mance and PD, we design two types of recommendation tasks:

• Task-Remain (Task-R): Given the model trained up until time

period 𝑡 , the model is tested by recommending items for the

remaining time periods with the test setDtest

𝑡 = D𝑡+1∪· · ·∪D𝑇 .
• Task-Next (Task-N): Given the model trained up until time period

𝑡 , the model is tested by recommending items for the right-next

time period with the test set Dtest

𝑡 = D𝑡+1.
Note that for both tasks, the data at the last time period, D𝑇 , is
only used for testing and not for training purposes. Due to space

issue, we put the full results for Task-N in §B.3.

We use NDCG@20 and F1@20 to evaluate the top-20 recom-

mendation quality. We adopt a similar approach as previous stud-

ies [17, 20], where we randomly sample 100 items that the user has

not interacted with as negative samples. These negative samples,

along with the ground-truth items, are used for evaluation.

4.1.4 Implementation details. For all compared methods, we set 𝑛

(the number of negative samples for BPR loss) to 4, the learning

rate to 0.001, and L2 regularization to 0.0001. We use the Adam

optimization algorithm [18] to update model parameters.

For FADE and Retrain-Fair based on both MF and NCF, we set

𝜏 = 3, 𝜇 = 4, and the number of dynamic update epochs to 10,

which consistently show excellent trade-off between performance

and disparity across all metrics and datasets. The 𝜆 is selectedwithin

range [0, 4] for Pretrain-Fair, Retrain-Fair, FADE-Abs, and FADE
in all cases. We use a random seed for better reproducibility. For the

implementation details of Rerank [20]/Adver [21], refer to §B.1

4.2 The Effect of Learning from New Data

For RQ1 and RQ2, we compare the recommendation performance

and performance disparity, both averaged across each dynamic

update data, of the five methods (Pretrain, Retrain, Finetune,
Pretrain-Fair, Retrain-Fair) with FADE. Fig. 2 shows the results
w.r.t. different metrics, base recommender, and datasets.

First, compared to Pretrain, Retrain and Finetune yield an av-

erage increase of 9.01% and 4.61%, respectively, in recommendation

performance in all cases, indicating that the new data is indeed use-

ful for improving recommendation performance of the models over

time. For Pretrain-Fair, Retrain-Fair, and FADE, the similar trend

is observed: an average increase of 4.66% and 4.09%, respectively.

However, in some cases on ModCloth, FADE performs worse than

Pretrain-Fair due to the initial high disparity of Pretrain-Fair.
Regarding performance disparity, the PDs of Retrain tend to

exceed those of Pretrain, and those of Finetune tend to fall below

but still remain significant. This highlights the need to incorporate

fairness considerations when integrating new data.

4.3 Ablation Study of FADE

4.3.1 With and without fairness loss. To answer RQ2, we continue

comparing FADE with aforementioned five methods. First, regard-

ing disparity, Fig. 2 shows that Retrain-Fair and FADE yield sig-

nificantly lower PDs compared to Retrain and Finetune, in all
cases, with an average reduction of 47.60% and 48.91%, respectively.

The results indicate that our fairness loss indeed helps reduce the

performance disparity at each time period.

Furthermore, we examine how disparities change over time

with FADE and the three methods, Retrain, Retrain-Fair, Fine-
tune, as shown in Fig. 3. We can see that without the fairness loss

(Retrain/Finetune), the PDs tend to persist relatively high over

time in all cases. However, when augmented with the fairness loss

(Retrain-Fair/FADE), the PDs tend to remain stably low.

Besides significant reduction of PDs, FADE has merely marginal

sacrifice (2.44% on average) in recommendation performance com-

pared to Finetune, and similar results are observed for Retrain and

Retrain-Fair, with an average decrease of 0.495%. This relatively

slight decrease in recommendation performance is because FADE
improves the performance of the disadvantaged group while reduc-

ing the performance of the advantaged group, in all cases, with an

average increase of 2.06% and decrease of 3.37%, respectively.

4.3.2 Fine-tuning v.s. Retraining. Fig. 2 shows that Finetune con-
sistently outperform Retrain w.r.t. both PD (an average decrease

of 14.79%) and recommendation performance (an average increase

of 1.38%) in all cases. FADE outperform Retrain-Fair w.r.t. PD (an

average decrease of 16.47%) while only slightly compromising rec-

ommendation performance (an average decrease of 0.61%). These

results are consistent with our theoretical findings in §3.1, indi-

cating that retraining is more affected by distribution shifts, while

fine-tuning can exponentially shrink this impact. The lack of a clear

advantage for fine-tuned models in recommendation performance

is due to their eventual degradation after multiple periods, which

is shown, for example, in the results for Movielenz in Fig.8 in §B.3.

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore, Singapore.

Adver Rerank Pretrain Retrain Finetune Pretrain-Fair Retrain-Fair FADE-Abs FADE (Ours)

0.75 0.80 0.85

0.5

1.0

1.5

2.0
·10−2

NDCG@20

|P
D
|

MF

0.280.300.320.34
0.0

1.0

2.0

·10−2

F1@20

MF

0.83 0.84 0.85
0.5

1.0

1.5

2.0
·10−2

NDCG@20

NCF

0.32 0.33 0.34

1.0

2.0

·10−2

F1@20

NCF

0.26 0.27 0.28 0.29

5.0

6.0

7.0

8.0

·10−2

NDCG@20

MF

0.07 0.08 0.09 0.10

2.0

2.5

3.0

·10−2

F1@20

MF

0.26 0.27 0.28
5.0

6.0

7.0

8.0
·10−2

NDCG@20

NCF

0.07 0.08 0.09 0.10
2.5

2.6

2.7

2.8

2.9
·10−2

F1@20

NCF

(a) Movielenz (b) ModCloth

Figure 2: The trade-off between recommendation performance (NDCG@20 & F1@20) and absolute performance disparity |PD|
of eight compared methods and FADE in Task-R. Employing our fairness loss leads to a substantial reduction in |PD| across all
cases, with a modest impact on overall performance. Note that the optimal point should be situated in the bottom-right corner.

Retrain Finetune Retrain-Fair FADE (Ours)

1 2 3 4 5 6

0.0

1.0

2.0

3.0
·10−2

Time period

|P
D
|

NDCG@20 / MF

1 2 3 4 5 6

0.0

1.0

2.0

3.0
·10−2

Time period

|P
D
|

F1@20 / MF

1 2 3 4 5 6

0.0

1.0

2.0

·10−2

Time period
|P
D
|

NDCG@20 / NCF

1 2 3 4 5 6

0.0

1.0

2.0

·10−2

Time period

|P
D
|

F1@20 / NCF

(a) Movielenz

1 2 3 4 5 6

0.0

0.1

0.1

0.1

Time period

|P
D
|

NDCG@20 / MF

1 2 3 4 5 6

2.0

3.0

4.0
·10−2

Time period

|P
D
|

F1@20 / MF

1 2 3 4 5 6

4.0

6.0

8.0

·10−2

Time period

|P
D
|

NDCG@20 / NCF

1 2 3 4 5 6

2.0

3.0

·10−2

Time period

|P
D
|

F1@20 / NCF

(b) ModCloth

Figure 3: The trend of the absolute performance disparity (|PD|) in Task-R. Without the fairness loss, the |PD| is relatively high

and often increase, while with the fairness loss, particularly in FADE, the |PD| tends to remain relatively low.

4.4 Comparison with Fairness Competitors

To answer RQ3, we further compare FADE with the two fairness-

aware competitors, Adver and Rerank, in Fig. 2. Note that all of

those methods are implemented based on fine-tuning strategy for

fair comparison. First, FADE consistently achieves smaller PDs,

averaging 36.53%, and it offers comparable recommendation perfor-

mance on average 1.49% better than Adver. This is because Adver
is not designed to reduce the performance gap between user groups;

instead, its focus is on removing information related to sensitive

attributes from user representations.

Rerank and Finetune yield similar results in many cases, mean-

ing that its re-ranking algorithm struggle to effectively re-rank

the given recommendation lists. This is because the given base

recommendation lists are already too unfair. For example, for dis-

advantaged users, the predicted scores may not accurately reflect

the user’s true interests, resulting in very low predicted scores for

the ground-truth items in the list. This issue is exacerbated when

the given recommendation lists are short, which is a common in

practice. This observation agrees with our intuition that dynamic

adaptation is necessary rather than using post-processing.

4.5 Time-efficiency Comparison

To answer RQ4, we compare running time of FADE with the full-

retraining based methods and the other fairness-aware techniques.

The results are in Table 2 and each entry is the average running

time of a model across the dynamic update data at each time period.

We have several observations based on the running time, aver-

aged over base models and datasets. Firstly, Finetune/FADE achieve
approximately 323/270 times faster running time compared to Re-
train/Retrain-Fair, indicating that the fine-tuning strategy em-

ployed in FADE enables the models to achieve high time efficiency,

making them ideal for dynamic settings. Secondly,Retrain-Fair/FADE
exhibit approximately 1.06/1.27 times slower running time in com-

parison to Retrain/Finetune. This suggests that the additional

computational cost introduced by our fairness loss is not signif-

icant. Lastly, FADE demonstrates a time efficiency around 10.23

times and 94.11 times faster than Adver and Rerank, respectively,
highlighting the lightweight design of our fairness loss compared

to the existing fairness-aware losses.

4.6 Comparison with Soft Ranking Metrics

Due to the space limit, the results for RQ5 are deferred to §B.4. In

essense, they show that FADE outperforms ormatches the variant of

FADE adapting NeuralNDCG in both recommendation performance

and disparity, while being approximately four times faster.

4.7 Hyperparameter Analysis

For RQ6, we investigate the sensitivity of FADE to four hyperpa-

rameters: (1) the scaling parameter 𝜆, (2) the number of epochs

WWW ’24, May 13–17, 2024, Singapore, Singapore. Hyunsik Yoo et al.

Table 2: Efficiency comparison on the running time (seconds).

Data Models

Full-retrain-based Fine-tune-based

Retrain Retrain-Fair Adver Rerank Finetune FADE

Movie.

MF 1373.17 1401.18 55.16 132.46 2.57 4.08

NCF 1381.59 1488.5 61.66 420.54 5.07 5.93

Mod.

MF 154.22 163.12 4.01 250.75 0.79 0.93

NCF 188.58 242.29 4.01 344.51 1.15 1.26

Average 774.39 823.77 31.21 287.06 2.40 3.05

Advantaged group Disadvantaged group

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0

0.830

0.840

0.850

𝜆

N
D
C
G
@
2
0

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0

0.325
0.330
0.335
0.340

𝜆

F
1
@
2
0

Figure 4: The effect of the scaling parameter 𝜆 on the perfor-

mance of the advantaged and disadvantaged groups.

Advantaged group Disadvantaged group

1 5 101520253035404550

0.70

0.75

0.80

0.85

(a) The number of epochs

N
D
C
G
@
2
0

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.40

0.60

0.80

(b) Tau 𝜏

N
D
C
G
@
2
0

Figure 5: Effect of hyperparamters.

of dynamic updates, (3) the temperature parameter 𝜏 , and (4) the

number of negative items 𝜇. Due to the space limit, we only show

the results of FADE based on MF on Movielenz for 𝜆, the number of

epochs, and 𝜏 in Figs. 4 & 5. Please refer to §B.5 for the full results.

They illustrate the performance of the advantaged and disadvan-

taged user groups for different values of these hyperparameters.

4.7.1 Effect of scaling parameter 𝜆 for the fairness Loss. Fig. 4 shows
that the performance of the advantaged group tend to decrease

while that of the disadvantaged group tend to increase as 𝜆 increases.

In other words, the performance disparity between the two user

groups steadily reduces until 𝜆 reaches an optimal value, which

varies depending on the specific metric used. The results indicate

that 𝜆 effectively controls the trade-off between recommendation

performance and performance disparity.

4.7.2 Effect of the number of epochs of dynamic updates. Fig. 5-(a)
shows that the performance of both user groups increases as the

number of epochs of dynamic fine-tuning increases until reaching

a peak around epoch 5 or 10. Subsequently, the performance gradu-

ally declines with further increases in the number of epochs. We

suspect that setting the number of epochs too low may result in the

model not learning enough from the current data. Conversely, when

the number of epochs is set too high, the model potentially loses

the knowledge acquired from historical data. We argue that this

phenomenon is well-suited for the dynamic environment, as setting

a low value for the number of epochs results in high efficiency.

4.7.3 Effect of temperature parameter 𝜏 in the relaxed permutation
matrix. Higher values of 𝜏 result in smoother rows in the relaxed

permutation matrix, P̂𝑢 [𝑖, :]. Fig 5-(b) shows that the performance

of both user groups increases until 𝜏 = 2, and then stabilizes. These

findings indicate that FADE is not highly sensitive to 𝜏 , consis-

tently delivering excellent performance for both user groups as

long as 𝜏 is not too small. When 𝜏 is set too low, the Gumbel-

softmax distribution becomes sharp, resulting in a nearly deter-

ministic decision-making process for the model, i.e., P̂𝑢 [𝑖, :] will be
close to the one-hot vector of the 𝑖-th ranked item. As a result, the

entry corresponding to the positive item in that vector is likely to

have an extremely small value, from the initial phase of training,

potentially hindering the the fairness regularization.

5 RELATEDWORK

Dynamic recommender systems. Instead of fully retraining with

the entire dataset when new data is collected, which can be time-

inefficient, we can fine-tune the model parameters using only the

new data, which is referred to as dynamic/online recommender

systems in the literature. To effectively learn from relatively sparse

new data, several methods have been proposed based on reweight-

ing either (1) the impact of each user-item interaction [13, 33] or

(2) that of each model parameter [9, 23, 44]; [17] utilizes both ap-

proaches. One unique advantage of the fairness loss in FADE is

that it can be easily applied to any existing dynamic recommender

systems optimized using gradient-based algorithms.

Fair recommender systems in dynamic scenarios. Various

fairness demands exist in recommender systems, including user-

side [36], item-side [6], and two-sided fairness [43], as well as fair-

ness on unipartite networks [1]. User-side fairness ensures fair

recommendation quality for different users, while item-side fair-

ness concentrates on equal exposure opportunities for items Two-

sided fairness seeks to balance these two aspects. While the lit-

erature [11, 26, 46] has addressed item-side fairness in dynamic

recommendations, such as the work by [46] that scales predicted

ratings by item popularity with higher strength over time, user-side

fairness in dynamic settings remains unexplored, to our knowledge.

As described in Section 1, existing user-side fairness-aware re-

ranking methods [10, 20] face the difficulties in dynamic settings.

These methods tend to be time-inefficient, involving optimization

problem akin to 0-1 integer programming problem. Furthermore,

their non-differentiable fairness constraint, separating fairness op-

timization from that of recommendation quality, precludes model

parameters from being regularized by fairness constraints. This

hinders adaptation to distribution shifts in dynamic settings.

Another line of research into user-side fairness [2, 40, 41] em-

ploys adversarial functions to generate fair user representations in-

dependent of sensitive user attributes. However, these formulations

do not explicitly address the reduction of performance disparity.

6 CONCLUSION

In this paper, we study the problem of user-side fairness in the dy-

namic recommendation scenario. We point out three key challenges

in this problem: (1) distribution shifts, (2) frequent model updates,

and (3) non-differentiability of ranking metrics. To address these

challenges, we begin with theoretical analyses on fine-tuning v.s.

retraining, showing that the best practice is incremental fine-tuning

with restart. Guided by these insights, we propose FAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAFAir DDDDDDDDDDDDDDDDDynamic

rEEEEEEEEEEEEEEEEEcommender (FADE), an end-to-end fine-tuning framework that

dynamically ensures user-side fairness over time. It incorporates

our fairness loss equipped with our lightweight Differentiable Hit,

which enhances efficiency over the recent NeuralNDCG method.

Through extensive experiments, we verify that FADE effectively

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore, Singapore.

and efficiently alleviates the performance disparity without signifi-

cantly sacrificing recommendation performance.

ACKNOWLEDGMENT

This work is partially supported by NSF (1947135, 2134079, 1939725),

DHS (17STQAC00001-07-00), and NIFA (2020-67021-32799).

REFERENCES

[1] Nil-Jana Akpinar, Cyrus DiCiccio, Preetam Nandy, and Kinjal Basu. 2022. Long-

term Dynamics of Fairness Intervention in Connection Recommender Systems.

In Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society. 22–35.
[2] Ghazaleh Beigi, Ahmadreza Mosallanezhad, Ruocheng Guo, Hamidreza Alvari,

Alexander Nou, andHuan Liu. 2020. Privacy-aware recommendationwith private-

attribute protection using adversarial learning. In Proceedings of the 13th Interna-
tional Conference on Web Search and Data Mining. 34–42.

[3] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and

Jennifer Wortman Vaughan. 2010. A theory of learning from different domains.

Machine Learning 79 (2010), 151–175.

[4] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning

to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. 129–136.

[5] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan

He. 2020. Bias and debias in recommender system: A survey and future directions.

ACM Transactions on Information Systems (2020).
[6] Xiao Chen, Wenqi Fan, Jingfan Chen, Haochen Liu, Zitao Liu, Zhaoxiang Zhang,

and Qing Li. 2023. Fairly adaptive negative sampling for recommendations. In

Proceedings of the ACM Web Conference 2023. 3723–3733.
[7] Virginie Do, Sam Corbett-Davies, Jamal Atif, and Nicolas Usunier. 2021. Two-

sided fairness in rankings via Lorenz dominance. Advances in Neural Information
Processing Systems 34 (2021), 8596–8608.

[8] Yushun Dong, Jian Kang, Hanghang Tong, and Jundong Li. 2021. Individual

fairness for graph neural networks: A ranking based approach. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
300–310.

[9] Zhengxiao Du, Xiaowei Wang, Hongxia Yang, Jingren Zhou, and Jie Tang. 2019.

Sequential scenario-specific meta learner for online recommendation. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 2895–2904.

[10] Zuohui Fu, Yikun Xian, Ruoyuan Gao, Jieyu Zhao, Qiaoying Huang, Yingqiang

Ge, Shuyuan Xu, Shijie Geng, Chirag Shah, Yongfeng Zhang, et al. 2020. Fairness-

aware explainable recommendation over knowledge graphs. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 69–78.

[11] Yingqiang Ge, Shuchang Liu, Ruoyuan Gao, Yikun Xian, Yunqi Li, Xiangyu Zhao,

Changhua Pei, Fei Sun, Junfeng Ge, Wenwu Ou, et al. 2021. Towards long-

term fairness in recommendation. In Proceedings of the 14th ACM international
conference on web search and data mining. 445–453.

[12] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. 2019. Stochastic

Optimization of Sorting Networks via Continuous Relaxations. In Proceedings of
the International Conference on Learning Representations.

[13] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast ma-

trix factorization for online recommendation with implicit feedback. In Proceed-
ings of the 39th International ACM SIGIR conference on Research and Development
in Information Retrieval. 549–558.

[14] Rashidul Islam, Kamrun Naher Keya, Ziqian Zeng, Shimei Pan, and James Foulds.

2021. Debiasing career recommendations with neural fair collaborative filtering.

In Proceedings of the Web Conference 2021. 3779–3790.
[15] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization

with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).
[16] Piyush Kansal, Nitish Kumar, Sangam Verma, Karamjit Singh, and Pranav Poudu-

val. 2022. FLiB: Fair Link Prediction in Bipartite Network. In Advances in
Knowledge Discovery and Data Mining: 26th Pacific-Asia Conference, PAKDD
2022, Chengdu, China, May 16–19, 2022, Proceedings, Part II. Springer, 485–498.

[17] Minseok Kim, Hwanjun Song, Yooju Shin, Dongmin Park, Kijung Shin, and Jae-

Gil Lee. 2022. Meta-Learning for Online Update of Recommender Systems. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 4065–4074.
[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[19] Preethi Lahoti, Krishna P Gummadi, and Gerhard Weikum. 2019. ifair: Learning

individually fair data representations for algorithmic decision making. In 2019
ieee 35th international conference on data engineering (icde). IEEE, 1334–1345.

[20] Yunqi Li, Hanxiong Chen, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2021.

User-oriented fairness in recommendation. In Proceedings of the Web Conference
2021. 624–632.

[21] Yunqi Li, Hanxiong Chen, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. 2021.

Towards personalized fairness based on causal notion. In Proceedings of the 44th

International ACM SIGIR Conference on Research and Development in Information
Retrieval. 1054–1063.

[22] Yanying Li, Xiuling Wang, Yue Ning, and Hui Wang. 2022. Fairlp: Towards fair

link prediction on social network graphs. In Proceedings of the International AAAI
Conference on Web and Social Media, Vol. 16. 628–639.

[23] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. 2017. Meta-sgd: Learning to

learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835 (2017).
[24] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. 2009. Domain

adaptation: Learning bounds and algorithms. In Proceedings of The 22nd Annual
Conference on Learning Theory.

[25] Andreas Maurer and Massimiliano Pontil. 2021. Concentration inequalities under

sub-Gaussian and sub-exponential conditions. In Advances in Neural Information
Processing Systems, Vol. 34. 7588–7597.

[26] Marco Morik, Ashudeep Singh, Jessica Hong, and Thorsten Joachims. 2020. Con-

trolling fairness and bias in dynamic learning-to-rank. In Proceedings of the 43rd
international ACM SIGIR conference on research and development in information
retrieval. 429–438.

[27] Allan Pinkus. 1999. Approximation theory of the MLP model in neural networks.

Acta Numerica 8 (1999), 143–195.
[28] Przemysław Pobrotyn and Radosław Białobrzeski. 2021. Neuralndcg: Direct

optimisation of a ranking metric via differentiable relaxation of sorting. arXiv
preprint arXiv:2102.07831 (2021).

[29] David Pollard. 1990. Section 4: Packing and covering in Euclidean spaces. In

Empirical Processes. Vol. 2. Institute of Mathematical Statistics, 14–21.

[30] Tao Qin, Tie-Yan Liu, and Hang Li. 2010. A general approximation framework

for direct optimization of information retrieval measures. Information Retrieval
13 (2010), 375–397.

[31] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. 2019.

Meta-learning with implicit gradients. In Advances in Neural Information Process-
ing Systems, Vol. 32.

[32] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

[33] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu

Meng. 2019. Meta-weight-net: Learning an explicit mapping for sample weighting.

Advances in neural information processing systems 32 (2019).
[34] Harald Steck. 2011. Item popularity and recommendation accuracy. In Proceedings

of the fifth ACM conference on Recommender systems. 125–132.
[35] Harald Steck. 2019. Collaborative filtering via high-dimensional regression. arXiv

preprint arXiv:1904.13033 (2019).
[36] Jiakai Tang, Shiqi Shen, Zhipeng Wang, Zhi Gong, Jingsen Zhang, and Xu Chen.

2023. When Fairness meets Bias: a Debiased Framework for Fairness aware Top-N

Recommendation. In Proceedings of the 17th ACM Conference on Recommender
Systems. 200–210.

[37] V.N. Vapnik and A. Ya Chervonenkis. 1971. On the uniform convergence of

relative frequencies of events to their probabilities. Theory of Probability & Its
Applications 16, 2 (1971), 264–280.

[38] Mengting Wan, Jianmo Ni, Rishabh Misra, and Julian McAuley. 2020. Addressing

marketing bias in product recommendations. In Proceedings of the 13th interna-
tional conference on web search and data mining. 618–626.

[39] Yifan Wang, Weizhi Ma, Min Zhang, Yiqun Liu, and Shaoping Ma. 2023. A survey

on the fairness of recommender systems. ACM Transactions on Information
Systems 41, 3 (2023), 1–43.

[40] Chuhan Wu, Fangzhao Wu, Xiting Wang, Yongfeng Huang, and Xing Xie. 2021.

Fairness-aware news recommendation with decomposed adversarial learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 4462–4469.
[41] Le Wu, Lei Chen, Pengyang Shao, Richang Hong, Xiting Wang, and Meng Wang.

2021. Learning fair representations for recommendation: A graph-based perspec-

tive. In Proceedings of the Web Conference 2021. 2198–2208.
[42] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural

networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1–37.
[43] Yao Wu, Jian Cao, Guandong Xu, and Yudong Tan. 2021. TFROM: A two-sided

fairness-aware recommendation model for both customers and providers. In

Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 1013–1022.

[44] Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He, Meng Wang, Yan Li, and

Yongdong Zhang. 2020. How to retrain recommender system? A sequential meta-

learning method. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 1479–1488.

[45] Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li, and Depeng Jin. 2021.

Disentangling user interest and conformity for recommendation with causal

embedding. In Proceedings of the Web Conference 2021. 2980–2991.
[46] Ziwei Zhu, Yun He, Xing Zhao, and James Caverlee. 2021. Popularity bias in

dynamic recommendation. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining. 2439–2449.

[47] Ziwei Zhu, Yun He, Xing Zhao, Yin Zhang, Jianling Wang, and James Caverlee.

2021. Popularity-opportunity bias in collaborative filtering. In Proceedings of the

WWW ’24, May 13–17, 2024, Singapore, Singapore. Hyunsik Yoo et al.

14th ACM International Conference on Web Search and Data Mining. 85–93.
[48] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin.

2019. Reinforcement learning to optimize long-term user engagement in recom-

mender systems. In Proceedings of the 25th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining. 2810–2818.

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore, Singapore.

A THEORETICAL ANALYSES

A.1 Assumptions

In this subsection, we introduce our theoretical assumptions, which

are quite mild and realistic.

To ensure that the dataset has a good coverage of the underlying

distribution, a common assumption in literature is independence:

Assumption 1 (Data independence). For every 𝑡 , the data
tuples in D𝑡 are mutually independent.

Regarding the loss function, a well-behaved loss function should

be able to be minimized. Common loss functions satisfy this prop-

erty. This leads us to the following Assumption 2:

Assumption 2 (Existence of infima). For every 𝑡 , the infimum
L∗𝑡 := infW L𝑡 (W) exists.

Note that we do not assume realizability, i.e., we do not assume

that there existsW that can achieve this infimum. Our Assump-

tion 2 is realistic in machine learning. For example, neural networks

can arbitrarily approximate any continuous function over any com-

pact domain [27], but they may not be exactly equal that function.

Besides that, since data tuples are mutually independent, each

data tuple in the dataset should not have dominant influence on the

overall loss function, which means that the loss function should

use the whole dataset. This leads us to the following Assumption 3:

Assumption 3 (No dominant influence). For every 𝑡 , for each
data tuple 𝑧 ∈ D𝑡 , we assume that supW |LD𝑡 (W) − L𝑡 (W)|

conditioned on D𝑡 \ {𝑧} is
(𝜍√log𝑚𝑡

𝑚𝑡

)
2-subgaussian. Without loss of

generality, we can assume 𝜍 = 1 by rescaling L.
The subgaussian property is a common assumption in machine

learning [25], and 𝜍 in our Assumption 3 can be viewed as a gener-

alization of the Vapnik–Chervonenkis dimension [37] and Pollard’s

pseudodimension [29]. Since there exist various definitions of the

subgaussian property (yet equivalent up to constant factors), we

clarify our definition as follows:

Definition 1 (Subgaussian property). For 𝜍 > 0, a real-
valued random variable 𝑋 is said to be 𝜍2-subgaussian if

E[e𝑣 (𝑋−E[𝑋])] ≤ e
𝜍2𝑣2/2, ∀𝑣 ∈ R. (19)

The equality holds for univariate Gaussians with variance 𝜍2.

Finally, we state our assumption on fine-tuning and retraining.

For each 𝑡 ≥ 1, letWft

𝑡 denote the model parameters fine-tuned

till D𝑡 . To characterize the fact that the fine-tunedWft

𝑡 does not

completely forget the previously learned knowledge inWft

𝑡−1, we
assume that all time periods share the same parameter space and

use the following classic Assumption 4 (adapted from [31]):

Assumption 4 (Proximal fine-tuning). There is 0 < 𝛾 < 1

such that for each 𝑡 ≥ 1, the number of fine-tuning epochs is decided
such that the fine-tunedWft

𝑡 is minimizing

ℓ𝑡 (W) := LD𝑡 (W) + 𝛾ℓ𝑡−1 (W), (20)

where ℓ0 (W) := LD0 (W) denotes the pretraining loss function.

For retraining, we assume that the influence of each time period

𝑡 to the retraining loss is a proportional to the size𝑚𝑡 of D𝑡 :
Assumption 5 (Retraining loss).

Lrt

𝑡te−1 (W) :=
∑𝑡te−1
𝑡=0

𝑚𝑡LD𝑡 (W)∑𝑡te−1
𝑡=0

𝑚𝑡
. (21)

Although this is a simplification of the retraining loss in practice,

it still captures the essential properties of retraining.

A.2 Proofs of Theorems 3.1 & 3.2

Our proofs of Theorems 3.1 & 3.2 rely on the following Lemma A.1.

Lemma A.1. For 𝜶 ∈ R𝑡te≥0 with
∑𝑡te−1
𝑡=0

𝛼𝑡 = 1 and for 𝜖 > 0, let
W𝜶 ,𝜖
𝑡te−1 denote some model parameters such that

𝑡te−1∑︁
𝑡=0

𝛼𝑡L𝑡 (W𝜶 ,𝜖
𝑡te−1) ≤ 𝜖 + infW

𝑡te−1∑︁
𝑡=0

𝛼𝑡LD𝑡(W) . (22)

Then with probability at least 1 − 𝛿 ,

L𝑡te (W
𝜶 ,𝜖
𝑡te−1) ≤ L

∗
𝑡te
+ 𝜖 + 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te + 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿
.

Proof of Lemma A.1. Generalized from [3]. For 𝑘 ≥ 1, let

W𝑘
𝑡 ∈ L−1𝑡

((
−∞,L∗𝑡 + 1

𝑘

])
, (23)

W𝑘
𝑡,𝑡te
∈ (L𝑡 + L𝑡te)−1

((
−∞,L∗𝑡 + L∗𝑡te + 𝑑

comb

𝑡,𝑡te
+ 1

𝑘

])
. (24)

Then for anyW, by the triangle inequality,��(L𝑡 (W) − L∗𝑡) − (L𝑡te (W) − L∗𝑡te)�� (25)

=
��|L𝑡 (W) − L∗𝑡 | − |L𝑡te (W) − L∗𝑡te |�� (26)

=
�� (|L𝑡 (W) − L𝑡 (W𝑘

𝑡,𝑡te
) | − |L𝑇 (W) − L𝑡te (W𝑘

𝑡,𝑡te
) |
)

+
(
|L𝑡 (W) − L∗𝑡 | − |L𝑡 (W) − L𝑡 (W𝑘

𝑡,𝑡te
) |
)

(27)

−
(
|L𝑡te (W) − L∗𝑡te | − |L𝑡te (W) − L𝑡te (W

𝑘
𝑡,𝑡te
) |
) ��

≤
��|L𝑡 (W) − L𝑡 (W𝑘

𝑡,𝑡te
) | − |L𝑡te (W) − L𝑡te (W𝑘

𝑡,𝑡te
) |
��

+
��|L𝑡 (W) − L∗𝑡 | − |L𝑡 (W) − L𝑡 (W𝑘

𝑡,𝑡te
) |
��

(28)

+
��|L𝑡te (W) − L∗𝑡te | − |L𝑡te (W) − L𝑡te (W𝑘

𝑡,𝑡te
) |
��

≤ 𝑑HΔH
𝑡,𝑡te

+
��(L𝑡 (W) − L∗𝑡) − (L𝑡 (W) − L𝑡 (W𝑘

𝑡,𝑡te
))
��

+
��(L𝑡te (W) − L∗𝑡te) − (L𝑡te (W) − L𝑡te (W𝑘

𝑡𝑇))
��

(29)

= 𝑑HΔH
𝑡,𝑡te

+ |L𝑡 (W𝑘
𝑡,𝑡te
) − L∗𝑡 | + |L𝑡te (W𝑘

𝑡,𝑡te
) − L∗𝑡te | (30)

= 𝑑HΔH
𝑡,𝑡te

+ L𝑡 (W𝑘
𝑡,𝑡te
) − L∗𝑡 + L𝑡te (W𝑘

𝑡,𝑡te
) − L∗𝑡te (31)

≤ 𝑑HΔH
𝑡,𝑡te

+ 𝑑comb

𝑡,𝑡te
+ 1

𝑘
(32)

= 𝑑𝑡,𝑡te +
1

𝑘
. (33)

WWW ’24, May 13–17, 2024, Singapore, Singapore. Hyunsik Yoo et al.

Thus, ���� 𝑡te−1∑︁
𝑡=0

𝛼𝑡 (L𝑡 (W) − L∗𝑡) − (L𝑡te (W) − L∗𝑡te)
���� (34)

=

���� 𝑡te−1∑︁
𝑡=0

𝛼𝑡 (L𝑡 (W) − L∗𝑡) −
𝑡te−1∑︁
𝑡=0

𝛼𝑡 (L𝑡te (W) − L∗𝑡te)
���� (35)

=

���� 𝑡te−1∑︁
𝑡=0

𝛼𝑡 ((L𝑡 (W) − L∗𝑡) − (L𝑡te (W) − L∗𝑡te))
���� (36)

≤
𝑡te−1∑︁
𝑡=0

𝛼𝑡 | (L𝑡 (W) − L∗𝑡) − (L𝑡te (W) − L∗𝑡te) | (37)

≤
𝑡te−1∑︁
𝑡=0

𝛼𝑡

(
𝑑𝑡,𝑡te +

1

𝑘

)
(38)

=

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te +
1

𝑘
. (39)

Besides that, by Theorem 3 in [25] and Assumption 3,

P

{
sup

W

���� 𝑡te−1∑︁
𝑡=0

𝛼𝑡L𝐷𝑡 (W) −
𝑡te−1∑︁
𝑡=0

𝛼𝑡L𝑡 (W)
���� ≥ 𝜖} (40)

≤ P
{ 𝑡te−1∑︁
𝑡=0

𝛼𝑡 sup
W
|L𝐷𝑡 (W) − L𝑡 (W)| ≥ 𝜖

}
(41)

≤ 2 exp

(
− 𝜖2

4

∑𝑡te−1
𝑡=0

𝑚𝑡
(
𝛼𝑡
𝜍
√
log𝑚𝑡
𝑚𝑡

)
2

)
(42)

= 2 exp

(
− 𝜖2

4𝜍2
∑𝑡te−1
𝑡=0

𝛼2

𝑡
𝑚𝑡

log𝑚𝑡

)
. (43)

Then for 𝜍 = 1, with probability at least 1 − 𝛿 , for allW,���� 𝑡te−1∑︁
𝑡=0

𝛼𝑡LD𝑡(W) −
𝑡te−1∑︁
𝑡=0

𝛼𝑡L𝑡 (W)
���� ≤ 2

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿
. (44)

Thus,

L𝑡te (W
𝜶 ,𝜖
𝑡te−1) (45)

= L∗𝑡te + L𝑡te (W
𝜶 ,𝜖
𝑡te−1) − L

∗
𝑡te

(46)

≤ L∗𝑡te +
𝑡te−1∑︁
𝑡=0

𝛼𝑡 (L𝑡 (W𝜶 ,𝜖
𝑡te−1) − L

∗
𝑡) +

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te +
1

𝑘
(47)

≤ L∗𝑡te +
𝑡te−1∑︁
𝑡=0

𝛼𝑡 (LD𝑡(W𝜶 ,𝜖
𝑡te−1) − L

∗
𝑡) +

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te

+ 1

𝑘
+ 2

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿
(48)

≤ L∗𝑡te + 𝜖 +
𝑡te−1∑︁
𝑡=0

𝛼𝑡 (LD𝑡(W𝑘
𝑡te
) − L∗𝑡) +

𝑇−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te

+ 1

𝑘
+ 2

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿
(49)

≤ L∗𝑡te + 𝜖 +
𝑡te−1∑︁
𝑡=0

𝛼𝑡 (L𝑡 (W𝑘
𝑡te
) − L∗𝑡) +

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te

+ 1

𝑘
+ 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿
(50)

≤ L∗𝑡te + 𝜖 + L𝑡te (W
𝑘
𝑡te
) − L∗𝑡 + 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te

+ 2

𝑘
+ 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿
(51)

≤ L∗𝑡te + 𝜖 + 2
𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te +
3

𝑘
+ 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿
. (52)

It follows from the continuity of probability that

P

{
L𝑡te (W

𝜶 ,𝜖
𝑡te−1) > L

∗
𝑡te
+ 𝜖 + 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te

+ 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿

}
(53)

= P

[∞⋃
𝑘=1

{
L𝑡te (W

𝜶 ,𝜖
𝑡te−1) ≥ L

∗
𝑡te
+ 𝜖 + 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te

+ 3

𝑘
+ 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿

}]
(54)

= lim

𝑘→∞
P

{
L𝑡te (W

𝜶 ,𝜖
𝑡te−1) ≥ L

∗
𝑡te
+ 𝜖 + 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te

+ 3

𝑘
+ 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿

}
(55)

≤ lim

𝑘→∞
𝛿 = 𝛿. □

Corollary A.2. Under the setup of Lemma A.1, let

𝐿𝜶𝑡te := inf

𝜖>0
𝜖∈Q

𝐿𝑡te (W
𝜶 ,𝜖
𝑡te−1) (56)

denote the best possible loss w.r.t. 𝜶 . With probability at least 1 − 𝛿 ,

𝐿𝜶𝑡te ≤ L
∗
𝑡te
+ 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te + 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿
. (57)

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore, Singapore.

Proof of Corollary A.2. By the continuity of probability,

P

{
L𝜶
𝑡te

> L∗𝑡te + 2
𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡𝑇 + 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿

}
(58)

= P

[∞⋃
𝑘=1

{
L𝜶
𝑡te
≥ L∗𝑡te +

1

𝑘
+ 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te + 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿

}]
(59)

= lim

𝑘→∞
P

{
L𝜶
𝑡te
≥ L∗𝑡te +

1

𝑘
+ 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te + 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿

}
(60)

≤ lim sup

𝑘→∞
P

{
L𝑡te

(
W𝜶 , 1

𝑘

𝑡te−1
)
≥ L∗𝑡te +

1

𝑘
+ 2

𝑡te−1∑︁
𝑡=0

𝛼𝑡𝑑𝑡,𝑡te

+ 4

√√√𝑡te−1∑︁
𝑡=0

𝛼2𝑡
𝑚𝑡

log𝑚𝑡

log

2

𝛿

}
(61)

≤ lim sup

𝑘→∞
𝛿 = 𝛿. □

Now we give the proofs of Theorems 3.1 & 3.2.

Proof of Theorem 3.1. By Assumption 4,

ℓ𝑡te−1 (W) = LD𝑡te−1 (W) +𝛾ℓ𝑡te−2 (W) =
𝑡te−1∑︁
𝑡=0

𝛾𝑡te−𝑡−1LD𝑡 (W) .

(62)

Thus, normalizing the coefficients gives

𝛼 ft𝑡 :=
(1 − 𝛾)𝛾𝑡te−𝑡−1

1 − 𝛾𝑡te . (63)

It follows from Corollary A.2 that

Lft

𝑡te
= L𝜶 ft

𝑡te
(64)

≤ L∗𝑡te + 2
𝑡te−1∑︁
𝑡=0

𝛼 ft𝑡 𝑑𝑡,𝑡te + 4

√√√𝑡te−1∑︁
𝑡=0

(𝛼 ft𝑡)2
𝑚𝑡

log𝑚𝑡

log

2

𝛿
(65)

= L∗𝑡te +
(1 − 𝛾)

(
2

𝑡te−1∑
𝑡=0

𝛾𝑡te−𝑡−1𝑑𝑡,𝑡te + 4
√︂(𝛾2𝑡te−2

𝑚
0

log𝑚
0

+ 1−𝛾2𝑡te−2
(1−𝛾2) 𝑚

1

log𝑚
1

)
log

2

𝛿

)
1 − 𝛾𝑡te .□

Proof of Theorem 3.2. By Assumption 5, we have

𝛼rt𝑡 :=
𝑚𝑡∑𝑡te−1

𝑡 ′=0 𝑚𝑡
′
=

𝑚𝑡

𝑚0 + (𝑡te − 1)𝑚1

. (66)

It follows from Corollary A.2 that

Lrt

𝑡te
= L𝜶 rt

𝑡te
(67)

≤ L∗𝑡te + 2
𝑡te−1∑︁
𝑡=0

𝛼rt𝑡 𝑑𝑡,𝑡te + 4

√√√𝑡te−1∑︁
𝑡=0

(𝛼rt𝑡)2
𝑚𝑡

log𝑚𝑡

log

2

𝛿
(68)

= L∗𝑡te +
2𝑚0𝑑0,𝑡te + 2

𝑡te−1∑
𝑡=1

𝑚1𝑑𝑡,𝑡te

𝑚0 + (𝑡te − 1)𝑚1

+ 4

√︄ ∑𝑡te−1
𝑡=0

𝑚𝑡 log𝑚𝑡

(𝑚0 + (𝑡te − 1)𝑚1)2
log

2

𝛿

(69)

≤ L∗𝑡te +
2𝑚0𝑑0,𝑡te + 2

𝑡te−1∑
𝑡=1

𝑚1𝑑𝑡,𝑡te

𝑚0 + (𝑡te − 1)𝑚1

+ 4

√︄ ∑𝑡te−1
𝑡=0

𝑚𝑡 log𝑚0

(𝑚0 + (𝑡te − 1)𝑚1)2
log

2

𝛿

(70)

= L∗𝑡te +
2𝑚0𝑑0,𝑡te + 2

𝑡te−1∑
𝑡=1

𝑚1𝑑𝑡,𝑡te

𝑚0 + (𝑡te − 1)𝑚1

+ 4

√︄
log𝑚0

𝑚0 + (𝑡te − 1)𝑚1

log
2

𝛿
. □

A.3 Proof of Proposition 3.3

Proof of Proposition 3.3. Note that

∇W𝑡
LD𝑡
fair
(W𝑡) = ∇W𝑡

(− log(𝜎 (−DPDD𝑡 (W𝑡)))) (71)

= 𝜎 (DPDD𝑡 (W𝑡))∇W𝑡
DPD

D𝑡 (W𝑡) . (72)

Since ∇W𝑡
LD𝑡
fair
(W𝑡) ≠ 0, then ∇W𝑡

DPD
D𝑡 (W𝑡) ≠ 0. Consider

𝜆 :=
−2⟨∇W𝑡

LD𝑡
rec
(W𝑡),∇W𝑡

DPD
D𝑡 (W𝑡)⟩

∥∇W𝑡
DPD

D𝑡 (W𝑡)∥2
2

≥ 0. (73)

By the chain rule,

lim

𝜂→+0
DPD

D𝑡 (W̃𝑡) − DPDD𝑡(W𝑡)
𝜂

(74)

= −⟨∇W𝑡
LD𝑡
rec
(W𝑡) + 𝜆∇W𝑡

LD𝑡
fair
(W𝑡),∇W𝑡

DPD
D𝑡 (W𝑡)⟩

(75)

= (1 − 2𝜎 (DPDD𝑡 (W𝑡))) (−⟨∇W𝑡
LD𝑡
rec
(W𝑡),∇W𝑡

DPD
D𝑡 (W𝑡)⟩).

(76)

The conclusion follows from the fact that

sgn(𝑥) (1 − 2𝜎 (𝑥)) ≤ 0, ∀𝑥 ∈ R. (77)

□

B EXPERIMENTS

B.1 Implementation Details of Competitors

For Adver, the adversarial coefficient 𝛾 is selected from the sug-

gested range [1, 10, 20, 50], as mentioned in their paper [21]. The

filter modules are two-layer neural networks with the LeakyReLU

activation. The discriminators are multi-layer perceptrons with 7

layers, LeakyReLU activation function, and a dropout rate of 0.3.

The discriminators are trained for 10 steps.

In the original paper of Rerank [20], they use a re-ranking tech-

nique under a fairness-constraint based on the test positive data,

which does not align with our assumption that we cannot access

future data when serving the recommendation list. Thus, we adopt

this method by designating items with predicted scores above a

certain threshold as ground-truth items. In our experiments, the

predicted scores are normalized to the range of 0 to 1, and we set

the threshold to 0.7.

B.2 Software and Hardware Configuration.

All codes are programmed in Python 3.6.9 and PyTorch 1.4.0. All

experiments are performed on a Linux server with 2 Intel Xeon

Gold 6240R CPUs and 1 Nvidia Tesla V100 SXM2 GPU with 32 GB

GPU memory.

WWW ’24, May 13–17, 2024, Singapore, Singapore. Hyunsik Yoo et al.

B.3 Additional Effectiveness Results

• Fig. 6 show the results for the trade-off between recommen-

dation performance and absolute performance disparity in

Task-N. The results for Task-R is in the main body.

• Fig. 7 shows the results for the trend of performance disparity

in Task-N. The results for Task-R is in the main body.

• Fig. 9 and Fig. 8 show the trend of recommendation perfor-

mance in Task-R and Task-N, respectively.

• Fig. 10 displays the trend in recommendation performance

of Pretrain, Retrain, Finetune, Retrain-Fair, and FADE in

Task-R on Movielenz. This includes the results immediately

after pretraining (i.e., 𝑡 = 0) and subsequent time periods

(i.e., 𝑡 = 7, 8, 9). Notably, the results for MF demonstrate

that fine-tuning-based methods outperform retraining-based

methods in the earlier time periods because fine-tuning is

less affected by distribution shifts. However, in later periods,

the performance of fine-tuned models eventually degrades,

falling even below that of retrained models due to accumu-

lated learning errors. These observations are consistent with

our theoretical analyses in §3.1 and suggest that the best

practice involves incremental fine-tuning with restart.

B.4 Comparison of Soft Ranking Methods

Fig. 11 presents FADE adapting different soft ranking metrics, in-

cluding ApproxNDCG [30] and NeuralNDCG [28], as well as FADE
incorporating the differentiable Hit in Task-R. The legend also pro-

vides the average running time for each method.

First, FADE outperforms or matches the NeuralNDCG variant

in both recommendation performance and performance disparity,

while being approximately four times faster. This is because the

differentiable Hit addresses NeuralNDCG’s gradient vanishing issue

by eliminating several processes, including the sinkhorn algorithm.

In comparison toApproxNDCG, FADE generally achieves smaller

performance disparity. Although ApproxNDCG may yield lower

disparity in some cases, it excessively sacrifices recommendation

quality, which is undesirable.

B.5 Hyperparameter Analysis

B.5.1 Effect of the scaling parameter 𝜆 for the fairness Loss. Fig. 13
and Fig. 17 show the effect of the scaling parameter 𝜆 on the rec-

ommendation performances of the advantaged and disadvantaged

groups in Task-R and Task-N, respectively.

B.5.2 Effect of the number of dynamic update epochs. Fig. 14 and
Fig. 18 show the effect of the number of dynamic update epochs on

the recommendation performances of the advantaged and disad-

vantaged groups in Task-R and Task-N, respectively.

B.5.3 Effect of temperature parameter 𝜏 in the relaxed permutation
matrix. Fig. 15 and Fig. 19 show the effect of the temperature pa-

rameter 𝜏 on the recommendation performances of the advantaged

and disadvantaged groups in Task-R and Task-N, respectively.

B.5.4 Effect of the number of negative items 𝜇. Fig. 16 and Fig. 20

show the effect of the number of negative candidate items 𝜇 for a

user in our fairness loss on the recommendation performances of

the advantaged and disadvantaged groups in Task-R and Task-N,

respectively.

In general, the results suggest that FADE performance remains

relatively stable when varying the number of negative items in

most cases. Thus, setting 𝜇 to 4 results in comparable performance

while also enhancing the execution time of FADE.

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore, Singapore.

Adver Rerank Pretrain Retrain Finetune Pretrain-Fair Retrain-Fair FADE-Abs FADE (Ours)

0.50 0.60 0.70

2.0

3.0

4.0

·10−2

NDCG@20

|P
D
|

MF

0.20 0.25 0.30

1.0

1.5

2.0

2.5

·10−2

F1@20

MF

0.710.720.730.74

2.5

3.0

·10−2

NDCG@20

NCF

0.30 0.30

1.8

2.0

2.2

·10−2

F1@20

NCF

0.17 0.18 0.19 0.20

3.0

4.0

5.0

·10−2

NDCG@20

MF

3.00 4.00 5.00 6.00

·10−2

1.0

1.2

1.4

1.6

·10−2

F1@20

MF

0.16 0.17 0.18 0.19
3.5

4.0

4.5

5.0

·10−2

NDCG@20

NCF

3.00 4.00 5.00 6.00

·10−2

1.2

1.3

1.4

1.5

·10−2

F1@20

NCF

(a) Movielenz (b) ModCloth

Figure 6: Trade-off between recommendation performance and absolute performance disparity in Task-N.

Retrain Finetune Retrain-Fair FADE (Ours)

1 2 3 4 5 6

0.0

2.0

4.0

6.0
·10−2

Time period

|P
D
|

NDCG@20 / MF

1 2 3 4 5 6

0.0

2.0

4.0

·10−2

Time period

|P
D
|

F1@20 / MF

1 2 3 4 5 6

0.0

2.0

4.0

6.0

8.0
·10−2

Time period

|P
D
|

NDCG@20 / NCF

1 2 3 4 5 6

0.0

2.0

4.0

·10−2

Time period

|P
D
|

F1@20 / NCF

(a) Movielenz

1 2 3 4 5 6

2.0

4.0

6.0

·10−2

Time period

|P
D
|

NDCG@20 / MF

1 2 3 4 5 6

1.0

2.0

·10−2

Time period

|P
D
|

F1@20 / MF

1 2 3 4 5 6

0.0

2.0

4.0

6.0

·10−2

Time period

|P
D
|

NDCG@20 / NCF

1 2 3 4 5 6

0.5

1.0

1.5

2.0

·10−2

Time period

|P
D
|

F1@20 / NCF

(b) ModCloth

Figure 7: Trend of absolute performance disparity in Task-N.

Pretrain Retrain Finetune Pretrain-fair Retrain-Fair FADE (Ours)

1 2 3 4 5 6

0.7

0.8

0.8

0.9

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 2 3 4 5 6

0.3

0.3

0.3

0.3

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 2 3 4 5 6

0.8

0.8

0.8

0.9

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 2 3 4 5 6

0.3

0.3

0.4

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

1 2 3 4 5 6

0.2

0.3

0.3

0.4

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 2 3 4 5 6

0.1

0.1

0.1

0.1

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 2 3 4 5 6

0.2

0.3

0.3

0.4

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 2 3 4 5 6

0.1
0.1
0.1
0.1
0.1

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 8: Trend of recommendation performance in Task-R.

WWW ’24, May 13–17, 2024, Singapore, Singapore. Hyunsik Yoo et al.

Pretrain Retrain Finetune Pretrain-fair Retrain-Fair FADE (Ours)

1 2 3 4 5 6

0.50

0.60

0.70

0.80

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 2 3 4 5 6

0.20

0.25

0.30

0.35

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 2 3 4 5 6

0.65

0.70

0.75

0.80

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 2 3 4 5 6

0.26

0.28

0.30

0.32

0.34

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

1 2 3 4 5 6

0.10

0.15

0.20

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 2 3 4 5 6

4.00

6.00

·10−2

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 2 3 4 5 6

0.10

0.15

0.20

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 2 3 4 5 6

3.00

4.00

5.00

6.00

·10−2

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 9: Trend of recommendation performance in Task-N.

Pretrain Retrain Finetune Retrain-Fair FADE (Ours)

0 1 2 3 4 5 6 7 8 9

0.7

0.8

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0 1 2 3 4 5 6 7 8 9

0.3
0.3
0.3
0.3
0.3
0.4

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0 1 2 3 4 5 6 7 8 9

0.8

0.8

0.8

Time period

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0 1 2 3 4 5 6 7 8 9

0.3

0.3

0.4

Time period

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

Figure 10: Trend of recommendation performance in Task-R on Movielenz, including subsequent time periods.

ApproxNDCG (avg. runtime: 3.13s) NeuralNDCG (avg. runtime: 12.15) FADE (Ours) (avg. runtime: 3.05s)

0.840.840.840.85

4.0

5.0

6.0

7.0

·10−3

NDCG@20

|P
D
|

MF

0.330.330.330.33

0.5

1.0

·10−2

F1@20

MF

0.84 0.84 0.85

5.0

6.0

7.0

·10−3

NDCG@20

NCF

0.34 0.34

4.0

5.0

6.0

·10−3

F1@20

NCF

0.240.250.260.27

2.0

4.0

6.0
·10−2

NDCG@20

MF

0.07 0.08 0.09 0.10
0.5

1.0

1.5

2.0

·10−2

F1@20

MF

0.26 0.27 0.28 0.29
5.0

5.5

6.0

·10−2

NDCG@20

NCF

8.80 9.00 9.20

·10−2

2.4

2.6

·10−2

F1@20

NCF

(a) Movielenz (b) ModCloth

Figure 11: Trade-off between recommendation performance and absolute performance disparity in Task-R.

ApproxNDCG (avg. runtime: 3.13s) NeuralNDCG (avg. runtime: 12.15) FADE (Ours) (avg. runtime: 3.05s)

0.730.740.740.74

2.4

2.5

2.5

·10−2

NDCG@20

|P
D
|

MF

0.29 0.29

1.9

2.0

2.1

·10−2

F1@20

MF

0.73 0.74 0.74

2.5

2.6

2.6

·10−2

NDCG@20

NCF

0.30 0.30 0.30

1.8

2.0

2.2

2.4
·10−2

F1@20

NCF

0.16 0.17 0.18 0.19

2.0

2.5

3.0

·10−2

NDCG@20

MF

4.404.604.805.00

·10−2

0.4

0.6

0.8

1.0

·10−2

F1@20

MF

0.18 0.18 0.19

3.4

3.6

3.8

4.0

·10−2

NDCG@20

NCF

4.80 4.85 4.90

·10−2

1.0

1.1

1.2

1.3

·10−2

F1@20

NCF

(a) Movielenz (b) ModCloth

Figure 12: Trade-off between recommendation performance and absolute performance disparity in Task-N.

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore, Singapore.

Advantaged group Disadvantaged group

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.80

0.82

0.84

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.31

0.32

0.33

0.34

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.84

0.84

0.85

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.33

0.34

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.22

0.24

0.26

0.28

0.30

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.07

0.08

0.09

0.10

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.22

0.24

0.26

0.28

0.30

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

7.00

8.00

9.00

·10−2

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 13: The effect of the scaling factor 𝜆 on the recommendation performances of the advantaged and disadvantaged groups

in Task-R.

Advantaged group Disadvantaged group

1 5 10 15 20 25 30 35 40 45 50

0.70

0.75

0.80

0.85

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 5 10 15 20 25 30 35 40 45 50

0.25

0.30

0.35

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 5 10 15 20 25 30 35 40 45 50

0.83

0.84

0.85

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 5 10 15 20 25 30 35 40 45 50

0.32

0.33

0.34

0.35

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

1 5 10 15 20 25 30 35 40 45 50

0.22

0.24

0.26

0.28

0.30

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 5 10 15 20 25 30 35 40 45 50

7.00

8.00

9.00

·10−2

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 5 10 15 20 25 30 35 40 45 50

0.24

0.26

0.28

0.30

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 5 10 15 20 25 30 35 40 45 50

0.07

0.08

0.09

0.10

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 14: The effect of the number of dynamic update epochs on the recommendation performances of the advantaged and

disadvantaged groups in Task-R.

WWW ’24, May 13–17, 2024, Singapore, Singapore. Hyunsik Yoo et al.

Advantaged group Disadvantaged group

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.40

0.60

0.80

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.10

0.20

0.30

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.84

0.84

0.85

0.85

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.32

0.33

0.34

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.22

0.24

0.26

0.28

0.30

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

7.00

8.00

9.00

·10−2

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.24

0.26

0.28

0.30

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

7.00

8.00

9.00

·10−2

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 15: The effect of the hyperparameter 𝜏 in our Differentiable Hit (DH) on the recommendation performances of the

advantaged and disadvantaged groups in Task-R.

Advantaged group Disadvantaged group

4 8 12 16 20 24 28 32 36 40

0.84

0.84

0.85

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

4 8 12 16 20 24 28 32 36 40

0.33

0.33

0.33

0.34

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

4 8 12 16 20 24 28 32 36 40

0.85

0.85

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

4 8 12 16 20 24 28 32 36 40

0.34

0.34

0.35

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

4 8 12 16 20 24 28 32 36 40

0.22

0.24

0.26

0.28

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

4 8 12 16 20 24 28 32 36 40

7.00

8.00

9.00

·10−2

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

4 8 12 16 20 24 28 32 36 40

0.24

0.26

0.28

0.30

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

4 8 12 16 20 24 28 32 36 40

7.00

8.00

9.00

·10−2

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 16: The effect of the number of negative items for each user in our fairness loss on the recommendation performances

of the advantaged and disadvantaged groups in Task-R.

Ensuring User-side Fairness in Dynamic Recommender Systems WWW ’24, May 13–17, 2024, Singapore, Singapore.

Advantaged group Disadvantaged group

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.70

0.72

0.74

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.28

0.29

0.30

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.73

0.74

0.75

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.30

0.30

0.31

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.16

0.18

0.20

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

4.00

4.50

5.00

5.50

·10−2

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

0.14

0.16

0.18

0.20

𝜆

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 2.5 3.0

4.00

4.50

5.00

·10−2

𝜆

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 17: The effect of the scaling factor 𝜆 on the recommendation performances of the advantaged and disadvantaged groups

in Task-N.

Advantaged group Disadvantaged group

1 5 10 15 20 25 30 35 40 45 50

0.65

0.70

0.75

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 5 10 15 20 25 30 35 40 45 50

0.24

0.26

0.28

0.30

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 5 10 15 20 25 30 35 40 45 50

0.72

0.73

0.74

0.75

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 5 10 15 20 25 30 35 40 45 50

0.30

0.30

0.31

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

1 5 10 15 20 25 30 35 40 45 50

0.14

0.16

0.18

0.20

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

1 5 10 15 20 25 30 35 40 45 50

4.00

4.50

5.00

5.50

·10−2

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

1 5 10 15 20 25 30 35 40 45 50

0.16

0.18

0.20

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

1 5 10 15 20 25 30 35 40 45 50

4.00

4.50

5.00

5.50
·10−2

The number of epochs

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 18: The effect of the number of dynamic update epochs on the recommendation performances of the advantaged and

disadvantaged groups in Task-N.

WWW ’24, May 13–17, 2024, Singapore, Singapore. Hyunsik Yoo et al.

Advantaged group Disadvantaged group

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.20

0.40

0.60

0.80

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.10

0.20

0.30

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.72

0.73

0.74

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.27

0.28

0.29

0.30

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.14

0.16

0.18

0.20

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

4.00

4.50

5.00

5.50

·10−2

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

0.16

0.18

0.20

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

0.1 0.5 1.0 2.0 3.0 4.0 5.0

4.00

4.50

5.00

·10−2

Tau 𝜏

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 19: The effect of the hyperparameter 𝜏 in our Differentiable Hit (DH) on the recommendation performances of the

advantaged and disadvantaged groups in Task-N.

Advantaged group Disadvantaged group

4 8 12 16 20 24 28 32 36 40

0.73

0.74

0.75

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

4 8 12 16 20 24 28 32 36 40

0.29

0.29

0.30

0.30

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

4 8 12 16 20 24 28 32 36 40

0.74

0.74

0.75

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

4 8 12 16 20 24 28 32 36 40

0.30

0.30

0.30

0.30

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(a) Movielenz

4 8 12 16 20 24 28 32 36 40

0.16

0.18

0.20

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / MF

4 8 12 16 20 24 28 32 36 40

4.50

5.00

5.50

·10−2

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / MF

4 8 12 16 20 24 28 32 36 40

0.16

0.18

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

NDCG@20 / NCF

4 8 12 16 20 24 28 32 36 40

4.00

4.50

5.00

·10−2

The number of negative items 𝜇

P
e
r
f
o
r
m
a
n
c
e

F1@20 / NCF

(b) ModCloth

Figure 20: The effect of the number of negative items for each user in our fairness loss on the recommendation performances

of the advantaged and disadvantaged groups in Task-N.

	Abstract
	1 Introduction
	2 Problem Definition
	3 FADE: A Fair Dynamic Recommender
	3.1 Fine-Tuning v.s. Retraining
	3.2 Incremental Fine-Tuning Strategy
	3.3 Differentiable Hit
	3.4 Fairness Loss
	3.5 Complexity Analysis

	4 Experiments
	4.1 Experimental Settings
	4.2 The Effect of Learning from New Data
	4.3 Ablation Study of FADE
	4.4 Comparison with Fairness Competitors
	4.5 Time-efficiency Comparison
	4.6 Comparison with Soft Ranking Metrics
	4.7 Hyperparameter Analysis

	5 Related Work
	6 Conclusion
	References
	A Theoretical Analyses
	A.1 Assumptions
	A.2 Proofs of Theorems 3.1 & 3.2
	A.3 Proof of Proposition 3.3

	B Experiments
	B.1 Implementation Details of Competitors
	B.2 Software and Hardware Configuration.
	B.3 Additional Effectiveness Results
	B.4 Comparison of Soft Ranking Methods
	B.5 Hyperparameter Analysis

