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ABSTRACT

Given an evolving tensor time series and multiple time ranges, how

can we compute Tucker decomposition for each time range effi-

ciently and accurately? Tucker decomposition has been widely used

in a variety of applications to obtain latent factors of tensor data.

For example, Tucker decomposition on air pollution data allows us

to analyze and compare air pollution patterns between different

locations during different periods of time. In these applications,

a common need is to compute Tucker decomposition for a given

time range. Furthermore, real-world tensor time series are typically

evolving in the time dimension. Such needs call for a data struc-

ture that can efficiently and accurately support range queries of

Tucker decomposition and stream updates. Unfortunately, existing

methods do not support either range queries or stream updates. For

methods that do not support range queries, they have to re-compute

from scratch for each query. Not until 2021 has a data structure

called Zoom-Tucker been proposed to support range queries via

block-wise preprocessing. However, Zoom-Tucker does not sup-

port stream updates and, more critically, suffers from a reluctant

efficiency–accuracy tradeoff — a large block size causes inaccuracy,

while a small block size leads to inefficiency. This challenging prob-

lem has remained open for years prior to our work. To solve this

challenging problem, we propose TUCKET, a data structure that

can efficiently and accurately handle both range queries and stream

updates. Our key idea is to design a new data structure that we

call a stream segment tree by generalizing the segment tree, a data

structure that was originally invented for computational geometry.

For a range query of length 𝐿, our TUCKET can find𝑂 (log𝐿) nodes
(called the hit set) from the tree and efficiently stitch their prepro-

cessed decompositions to answer the range query. We also propose

an algorithm to optimally prune the hit set via an approximation of

subtensor decomposition. For the𝑇 -th stream update, our TUCKET

modifies only amortized𝑂 (1) nodes and only𝑂 (log𝑇 ) nodes in the
worst case. Extensive evaluation demonstrates that our TUCKET

consistently achieves the highest efficiency and accuracy across

four large-scale datasets. Our TUCKET achieves at least 3 times

lower latency and at least 1.4 times smaller reconstruction error

than Zoom-Tucker on all datasets. The full version can be found at

https://github.com/q-rz/TUCKET/blob/main/TUCKET-Full.pdf.
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Figure 1: Case study on Air Quality data (see Section 8.6)
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1 INTRODUCTION

Tensor time series are ubiquitous in the real world, ranging from

multimedia data such as videos and music to time series data such

as stock prices, traffic volumes, climate, agriculture, environmental

monitoring, and physical systems. Tensor decomposition, such as

CANDECOMP [13] / PARAFAC [24] (CP), PARAFAC2 [36], and

Tucker [62] decompositions, is a fundamental approach to tensor

data analysis and performs an essential role in various applica-

tions including clustering [12, 26, 71], dimension reduction [37, 65],

anomaly detection [19, 39], concept discovery [4, 32, 33], and so

on [17, 40, 59, 69]. As a generalization of singular value decomposi-

tion, Tucker decomposition [62] seeks to approximately factorize

a tensor into factor matrices for each mode of the tensor and a

small core tensor characterizing the relations of the factor matri-

ces. Factor matrices and the core tensor can serve as the input for

downstream data mining algorithms such as clustering [71] and

anomaly detection [39].

In the analysis of tensor time series, a common situation is to

discover latent patterns in given time ranges [28]. For example,

given air quality data (a 3-way tensor time series X where X𝑡,𝑖, 𝑗

represents the concentration value of air pollutant 𝑗 in location 𝑖

at time 𝑡 ), environmental scientists can find out which locations

share similarity pollution patterns in March of each year by an-

alyzing the Tucker decomposition of each month. (See Figure 1

for illustration and the case study in Section 8.6 for detail.) Range

queries are necessary here because Tucker decompositions vary

across different time ranges due to the evolving nature of tensor

time series, as shown in Figure 1. Such needs give rise to an inter-

esting research question: given an evolving tensor time series and
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Table 1: Comparison in functionalities, time complexities per query, and overall space complexities. See Table 2 for the

definitions of 𝐿, 𝐷,𝑇 , 𝑟, 𝑝. Empirically, our TUCKET is faster than all other methods on a GPU because it is more parallelizable.

Zoom-Tucker cannot use a large block size 𝑏, or otherwise it would incur high error.

Method Range Query Stream Update Time Complexity per Query Space Complexity

Tucker-ALS [62] ✗ ✗ 𝑂 (𝑟𝐷𝑝−1𝐿) 𝑂 (𝐷𝑝−1𝑇 )
D-Tucker [29] ✗ ✓ 𝑂 (𝑟2𝐷𝑝−2𝐿) 𝑂 ((𝐷𝑝−1 + 𝑟𝐷𝑝−2)𝑇 )
Zoom-Tucker [30] ✓ ✗ 𝑂

(︁
𝑟2𝐷 𝐿

𝑏
+ 𝑟2𝐿 + 𝑟𝑝+1 𝐿

𝑏

)︁
𝑂
(︁
(𝑟𝐷 + 𝑟𝑝 )𝑇

𝑏
+ 𝑟𝑇

)︁
TUCKET (ours) ✓ ✓ 𝑂 (𝑟𝑝𝐷 log𝐿 + 𝑟2𝑝−2 (𝐷 + 𝐿) + log𝑇 ) 𝑂 ((𝑟𝐷 + 𝑟𝑝 )𝑇 + 𝑟𝑇 log𝑇 )

multiple time range queries, how can we design a data structure

that can efficiently and accurately compute Tucker decomposition

for each time range?

Unfortunately, existing Tucker decomposition methods do not

support either range queries or stream updates (see Table 1). For

methods that do not support range queries, they have to re-compute

from scratch for each range query. For example, D-Tucker [29] han-

dles stream updates via slice-wise preprocessing, but it supports

only full Tucker decomposition and cannot answer range queries

efficiently. Not until 2021 has a method called Zoom-Tucker [30]

been proposed to support range queries. Zoom-Tucker consists of

two phases: a preprocessing phase and a query phase. First, the

preprocessing phase divides the timespan into blocks and prepro-

cesses the Tucker decomposition of each block. Next, the query

phase answers time range queries by stitching the preprocessed

blocks included in the query range. However, Zoom-Tucker does

not support efficient stream updates (i.e., appending a new tensor

slice) due to its block structure.

Moreover, Zoom-Tucker suffers from a critical limitation: a large

block size causes low accuracy for short ranges due to a high ap-

proximation error, while a small block size leads to inefficiency

for long ranges that require to stitch many blocks. It means that

Zoom-Tucker suffers from a reluctant tradeoff between accuracy

and efficiency. How to avoid this tradeoff has been an open prob-

lem for years. Prior to our work, no existing method achieves both

efficiency and accuracy for Tucker decomposition range queries. A

crucial challenge here is how to design a more sophisticated data

structure and organize preprocessed results to avoid the efficiency–

accuracy tradeoff. What makes it even more challenging is that the

data structure needs to efficiently support stream updates to the

tensor time series.

To solve this challenging problem, we propose a new data struc-

ture called Tucker Tree (TUCKET) that can efficiently and accurately

handle both range queries of Tucker decomposition and stream

updates. The key idea of our TUCKET is to design a new data struc-

ture that we call a stream segment tree by generalizing the segment

tree [10], a data structure that was originally invented for com-

putational geometry. For a range query of length 𝐿, our TUCKET

can find 𝑂 (log𝐿) nodes (called the hit set) from the tree via our

optimal pruning algorithm and efficiently stitch their preprocessed

decompositions to answer the range query. Besides that, for the

𝑇 -th stream update, our TUCKET modifies only amortized 𝑂 (1)
nodes and only 𝑂 (log𝑇 ) nodes in the worst case.

The main contributions of this paper are summarized as follows:

• Data structure. We design a new data structure stream

segment tree to efficiently handle stream updates. It is much

faster here than the interval tree [54] and the R-tree [23].

Table 2: Nomenclature.

Symbol Description

vec vectorization

mat𝑛 mode-𝑛 matricization

×𝑛 mode-𝑛 tensor-matrix product

∥ · ∥F Frobenius norm

⊗ matrix Kronecker product

T
matrix transpose

X a tensor time series

𝑝 number of modes of X

𝑇 size of the temporal mode of X

𝐷2, . . . , 𝐷𝑝 sizes of non-temporal modes of X

𝐷 := max{𝐷2, . . . , 𝐷𝑝 } maximum size of non-temporal modes

𝑟1, . . . , 𝑟𝑝 target sizes of Tucker decomposition

𝑟 := max{𝑟1, . . . , 𝑟𝑝 } maximum target size

G core tensor in Tucker decomposition

𝑼 (1) , . . . ,𝑼 (𝑝 ) factor matrices in Tucker decomposition

[𝑇s,𝑇e ) time range of a query

𝐿 := 𝑇e − 𝑇s length of the query range

𝜃 threshold for hit set pruning

⊔ disjoint union

• Hit set pruning algorithm.We derive an efficient scheme

to approximate subtensor decompositions and employ it to

further reduce the size of the hit set for each query com-

pared with the standard segment tree.

• Stitching algorithm. We propose a new algorithm for

stitching subtensor decompositions. Our stitching algo-

rithm is more GPU-parallelizable and more numerically

stable than Zoom-Tucker’s stitching algorithm.

• Theoretical guarantees. We provide detailed theoreti-

cal guarantees for our proposed method in terms of time

complexity, space complexity, and error analysis.

• Empirical evaluation.We conduct extensive experiments

to evaluate our TUCKET against state-of-the-art methods

for Tucker decomposition on large-scale real-world tensor

time series datasets. Our TUCKET consistently achieves

both the highest efficiency and the highest accuracy across

all datasets. For example, our TUCKET achieves at least 3

times lower latency and at least 1.4 times smaller recon-

struction error on all datasets.

2 PRELIMINARIES

In this section, we present the preliminaries on Tucker decom-

position and Tucker-ALS. Main symbols used in this paper are

summarized in Table 2. Due to the space limit, preliminaries on

basic tensor operations are deferred to the full version.



Given a 𝑝-way tensorX ∈ R𝐷1×···×𝐷𝑝
and target sizes 𝑟1, . . . , 𝑟𝑝 ,

Tucker decomposition [62] aims to find a core tensor G ∈ R𝑟1×···×𝑟𝑝
and column-orthonormal factor matrices 𝑼 (𝑛) ∈ R𝐷𝑛×𝑟𝑛

(𝑛 =

1, . . . , 𝑝) that minimize

∥G ×1 𝑼 (1) · · · ×𝑝 𝑼 (𝑝 ) −X∥2
F
. (1)

Tucker decomposition is a generalization of the singular value

decomposition (SVD) of matrices. Similarly with SVD, a real-world

tensor X typically has X ≈ G ×1 𝑼 (1) · · · ×𝑝 𝑼 (𝑝 ) even for small

target sizes 𝑟1, . . . , 𝑟𝑝 [44]. Hence, Tucker decomposition can serve

as a compressed representation of a large tensor. Factor matrices

and the core tensor can serve as the input for downstream data

mining algorithms. For example, we can apply clustering [71] or

anomaly detection [39] to the row vectors of the factor matrices

𝑼 (𝑛) to discover similarity and dissimilarity patterns in the data.

A classic approach to Tucker decomposition is Tucker’s alter-

nating least squares method (Tucker-ALS) [62]. At each iteration,

Tucker-ALS optimizes the factor matrix of only one mode while

fixing all other factor matrices. Tucker [62] shows that the optimal

factor matrix 𝑼 (𝑛) for each mode 𝑛 is the 𝑟𝑛 leading left singular

vectors of the matrix

mat𝑛 (X ×1 𝑼 (1)T · · · ×𝑛−1 𝑼 (𝑛−1)T ×𝑛+1 𝑼 (𝑛+1)T · · · ×𝑝 𝑼 (𝑝 )T),
(2)

and that the optimal core tensor G is

X ×1 𝑼 (1)T · · · ×𝑝 𝑼 (𝑝 )T . (3)

3 PROBLEM DEFINITION

In this section, we first introduce the problem definition and then

present the design goals of TUCKET.

A tensor time series is a tensorwhere one of themodes represents

time. Without loss of generality, let the first mode be the temporal

mode. LetX ∈ R𝑇×𝐷2×···×𝐷𝑝
be a 𝑝-way tensor time series, where

the size of the temporal mode is 𝐷1 := 𝑇 , the sizes of non-temporal

modes are 𝐷2, . . . , 𝐷𝑝 , and the number of modes is 𝑝 ≥ 2. We call

𝑇 the timespan. For tensors Y1, . . . ,Y𝑠 of the same shape except

for the temporal mode, let

⎡⎢⎢⎢⎢⎣
Y1

.

.

.
Y𝑠

⎤⎥⎥⎥⎥⎦ denote concatenation along the

temporal mode. A tensor streamX ∈ R∗×𝐷2×···×𝐷𝑝
is a tensor time

series with a growing temporal mode: at each time 𝑇 , a tensor slice

X𝑇 ∈ R𝐷2×···×𝐷𝑝
is observed and appended to the tensor stream.

Given a tensor stream X ∈ R∗×𝐷2×···×𝐷𝑝
and the target sizes

(𝑟1, . . . , 𝑟𝑝 ) for Tucker decomposition, we aim to design a data

structure that supports the following two operations.𝑇 denotes the

timespan before the operation.

• Range query of Tucker decomposition: Given a time

range [𝑇s,𝑇e) ⊆ [0,𝑇 ), we need to efficiently compute the

Tucker decomposition of the subtensor X[𝑇s,𝑇e ) using the
data structure. The output is a core tensor G ∈ R𝑟1×···×𝑟𝑝
and factor matrices 𝑼 (1) ∈ R(𝑇e−𝑇s )×𝑟1 , 𝑼 (2) ∈ R𝐷2×𝑟2

, . . . ,

𝑼 (𝑝 ) ∈ R𝐷𝑝×𝑟𝑝
.

• Stream update: Given a tensor sliceX𝑇 ∈ R𝐷2×···×𝐷𝑝
, we

need to append the tensor slice to the tensor stream and

update the data structure accordingly.

The problem definition is illustrated in Figure 2 with Air Quality

data as an example. Air Quality data is a 3-way tensor time series

X ∈ R𝑇×𝐷2×𝐷3
where X𝑡,𝑖, 𝑗 represents the concentration value of

Query Q

⋯Location 𝒊

Pollutant 𝒋
Time 𝒕

Query 1

Tensor Time Series:Air Quality 𝒳!,#,$

Data Structure
TUCKET (ours)

Query 1
𝑇!: 03/01/2015
𝑇": 04/01/2015

(1 month)

⋯

Range Query Answering

Query Q
𝑇!: 05/18/2017
𝑇": 05/25/2017

(1 week)

Tucker Decomposition: 𝓖 ×#𝑼 # ×$𝑼 $ ×%𝑼 %

Range Query: 𝑇!, 𝑇"

⋯

05/24/201701/01/2015

Tucker-ALS

Core Tensor 𝓖 Temporal Factors 𝑼
!

Location Factors 𝑼 "

Pollutant Factors 𝑼 #

Figure 2: Illustration of range queries of Tucker decomposi-

tion. It is inefficient to directly apply Tucker-ALS for each

range query from scratch. Instead, we aim to design a data

structure that can efficiently and accurately answer range

queries of Tucker decompositionwithout re-computing from

scratch for each query.

air pollutant 𝑗 in location 𝑖 at time 𝑡 . Consider a case study where we

want to analyze air pollution patterns in March of each year. Here,

each range query is a month (March 2015, March 2016, or March

2017; see Figure 1). With the help of Tucker decomposition range

queries, we can find out which locations share similarity pollution

patterns in each month by clustering the row vectors of the location

factor matrix 𝑼 (2) of Tucker decomposition of each month. Results

of the case study are shown in Figure 1. See Section 8.6 for detail.

We design our TUCKET with the following three design goals

for a tensor time series data structure.

G1: Frequent arbitrary range queries.We focus on the situation

where queries are frequent, and we only consider online algorithms

(i.e., the algorithm has to process each operation sequentially as

soon as it arrives). Thus, we need to optimize the worst-case com-

plexity of answering each single range query. Besides that, we do

not assume any extra prior knowledge about the distribution of

possible range queries. Hence, we focus on the worst-case com-

plexity parameterized by: (i) the maximum size of non-temporal

modes, 𝐷 := max{𝐷2, . . . , 𝐷𝑝 }; (ii) the timespan, 𝑇 ; (iii) the max-

imum target size, 𝑟 := max{𝑟1, . . . , 𝑟𝑝 }; and (iv) the length of the

query range, 𝐿 := 𝑇e −𝑇s.
G2: Periodic stream updates. In real-world use cases, stream

updates to the tensor stream are typically periodic but may not be

as frequent as range queries. For instance, in the stock example

in Figure 2, the tensor stream is updated in a daily basis. Hence,

we allow the stream update operation to be a little more expensive

than range queries. Nonetheless, we still aim to optimize the time

complexity of stream updates so that it scales at most sublinearly

w.r.t. the total size 𝑇𝐷2 · · ·𝐷𝑝 of the current tensor time series.

G3: Nearly linear space. Every preprocessing-based data structure

is essentially a space–time tradeoff [16, 25] in that more preprocess-

ing leads to higher efficiency. On the one hand, if no preprocessing

were allowed, it would be impossible to outperform the naïve al-

gorithm that simply computes from scratch for each query. On

the other hand, if unlimited preprocessing were allowed, then a

trivial algorithm would be to preprocess the answers for all possible

𝑂 (𝑇 2) query ranges. To rule out such trivial algorithms, we require

that the space used by the preprocessing phase should be nearly
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Figure 3: Illustration of our TUCKET over timespan [0, 9). It
has height 5 = ⌈log

2
9⌉ + 1. When answering a range query

[𝑇s,𝑇e) = [1, 6) with pruning threshold 𝜃 = 0.7, node ⟨4⟩ is a
partial hit because | [1, 6) ∩ [0, 4) | = | [1, 4) | ≥ 0.7| [0, 4) |, and
node ⟨10⟩ is an entire hit because [4, 6) ⊆ [1, 6).
linear w.r.t. the timespan𝑇 , i.e., ˜︁𝑂 (𝑇 ). As a remark, we assume that

𝑝 = 𝑂 (1) and 𝑟 = 𝑜 (𝐷) in our complexity analysis.

4 TUCKET: DATA STRUCTURE DESIGN

In this section, we detail the design of our proposed data structure

Tucker Tree (TUCKET). We first introduce the challenges of the

problem and our key ideas in Section 4.1 and then present the

design of our stream segment tree in Section 4.2. Due to the space

limit, detailed proofs are deferred to the full version.

4.1 Challenges & Key Ideas

Our TUCKET is designed for efficient Tucker decomposition over

time ranges. An essential challenge of this problem is that the

Tucker decomposition operation does not form either an Abelian

group or a semigroup w.r.t. tensor concatenation. This means that

we cannot use classic data structures such as prefix sum tables, Fen-

wick trees [20], or Cartesian trees [9] to compute Tucker decomposi-

tion over time ranges. The state-of-the-art idea (proposed in [30]) is

to divide the time range [0,𝑇 ) into disjoint blocks [0, 𝑏), [𝑏, 2𝑏), . . .
of equal size 𝑏 and preprocess the Tucker decomposition for each

block. However, this idea suffers from an inevitable tradeoff be-

tween efficiency and accuracy: a small block size 𝑏 leads to ineffi-

ciency for long time ranges; a large block size causes inaccuracy

for time ranges shorter than 𝑏. This is because a larger block size

𝑏 corresponds to a coarser-grained preprocessing, which may fail

to preserve finer-grained patterns that exist temporarily in time

ranges shorter than 𝑏. For instance, if the block size 𝑏 corresponds

to a month, then Zoom-Tucker will be likely to yield inaccurate

results when querying for a week. To the best of our knowledge,

our work is the first data structure that addresses this challenge

without the efficiency–accuracy tradeoff.

Our first key idea, aiming to address this challenge, is to divide

the time range [0,𝑇 ) into carefully designed uneven, overlapping

blocks such that every range query can be expressed as a disjoint

union of a small number of “blocks.” Our idea leads us to the segment

tree [10], a data structure from computational geometry. Crucially,

in a segment tree over a timespan [0,𝑇 ), we can associate each node
𝑣 with a subrange [𝜎𝑣, 𝜏𝑣) such that every range [𝑇s,𝑇e) ⊆ [0,𝑇 )
can be expressed as a disjoint union of at most 𝑂 (log𝑇 ) nodes. We

call these nodes the hit set of [𝑇s,𝑇e). Then, we can answer each

range query efficiently by stitching the preprocessed subtensor

decompositions of the hit set.

However, the original segment tree has a static structure and

thus does not support stream data. Hence, we cannot simply apply

the segment tree. As our second key idea, we propose a new data

structure called the stream segment tree to support stream updates

in our setting. Our key insight regarding why segment trees are

static is that it is required to be a full binary tree in order to maintain

a depth of 𝑂 (log𝑇 ). Instead, we propose to relax this requirement

and allow our stream segment tree to be incomplete. To maintain a

depth of 𝑂 (log𝑇 ), we propose extending the root instead of only

extending leaf nodes like typical balanced search trees [22]. Fur-

thermore, each stream update operation only involves amortized

𝑂 (1) nodes to be updated. We will describe the detailed design of

our stream segment tree in Section 4.2.

4.2 Stream Segment Tree

The basic structure of our TUCKET is a stream segment tree, which

is a generalization of the segment tree [10] from computational

geometry. Here, we detail the design of our stream segment tree.

As we have discussed, the original segment tree does not support

stream updates. To enable stream updates, our key idea is to em-

ploy an expanded segment tree with an incomplete structure that

reserves the position of future nodes to support efficient updates

but does not construct them explicitly.

Specifically, a stream segment tree is a binary tree where each

node 𝑣 is associated with a time range [𝜎𝑣, 𝜏𝑣). There are three

types of nodes in a stream segment tree: leaf nodes L, intermediate

nodesM, and placeholder nodes P.
Leaf nodes. Each leaf node 𝑣 ∈ L represents a tensor slice X𝑡 , so

we let the leaf range be [𝜎𝑣, 𝜏𝑣) := [𝑡, 𝑡 + 1). After 𝑇 updates, we

require time ranges of leaf nodes to be contiguous, i.e., the whole

range [0,𝑇 ) is a disjoint union of the time ranges of leaf nodes:⨆︂
𝑣∈L
[𝜎𝑣, 𝜏𝑣) = [0,𝑇 ) . (4)

Besides that, we preprocess the Tucker decomposition of X[𝑡,𝑡+1)
and store it as Y𝑣 := H𝑣 ×1 𝑽 (1)𝑣 · · · ×𝑝 𝑽

(𝑝 )
𝑣 . Note that we only

compute the core tensorH𝑣 and factor matrices 𝑽 (1)𝑣 , . . . , 𝑽
(𝑝 )
𝑣 but

never actually compute Y𝑣 , i.e., Y𝑣 is only a symbol to refer to the

product.

Intermediate nodes. For each intermediate node 𝑣 ∈ M with time

range [𝜎𝑣, 𝜏𝑣), it represents a subtensor X[𝜎𝑣 ,𝜏𝑣 ) . An intermediate

node has exactly two children nodes 𝑢1, 𝑢2 ∈ L ∪ M that have

adjoint time ranges:

[𝜎𝑣, 𝜏𝑣) := [𝜎𝑢1
, 𝜏𝑢1
) ⊔ [𝜎𝑢2

, 𝜏𝑢2
). (5)

Besides that, similarly with leaf nodes, we preprocess the Tucker

decomposition of X[𝜎𝑣 ,𝜏𝑣 ) and store it as Y𝑣 := H𝑣 ×1 𝑽 (1)𝑣 · · · ×𝑝
𝑽
(𝑝 )
𝑣 . Here, Y𝑣 is still only a symbol to refer to the product.

Placeholder nodes. A placeholder node 𝑣 ∈ P represents a future

subtensor where some of its slices have not been observed yet.

Formally, if the current observed timespan is [0,𝑇 ). then the time

range [𝜎𝑣, 𝜏𝑣) of the placeholder node has 𝜎𝑣 < 𝑇 and 𝜏𝑣 ≥ 𝑇 . A

placeholder node has either one or two children. If 𝑣 has only one

child, then it has a left child 𝑢1 ∈ L ∪ M ∪ P; otherwise, 𝑣 has

a left child 𝑢1 ∈ L ∪M and a right child 𝑢2 ∈ P. Similarly with

intermediate nodes, we require its children to have adjoint time



ranges, i.e., [𝜎𝑣, 𝜏𝑣) := [𝜎𝑢1
, 𝜏𝑢1
) ⊔ [𝜎𝑢2

, 𝜏𝑢2
). Meanwhile, unlike

leaf and intermediate nodes, since the subtensor of the time range

[𝜎𝑣, 𝜏𝑣) has not been completely observed yet, we do not preprocess

the Tucker decomposition of a placeholder node and do not allow

placeholder nodes to be in the hit set.

Logarithmic height. To efficiently answer range queries, we want

that every range query [𝑇s,𝑇e) ⊆ [0,𝑇 ) can be divided into a disjoint
union of a small number of nodes (called the hit set) in the stream

segment tree. We make a key observation on the relation between

the size of the hit set and the height of the stream segment tree, as

formally stated in Lemma 4.1.

Lemma 4.1 (Hit set v.s. height). Given a stream segment tree

of height ℎ ≥ 1, for every range query, there exists a hit set of size

≤ max{2(ℎ − 1), 1}.

Proof sketch. First, if the query range [𝑇s,𝑇e) is a prefix or

a suffix of the time range [𝜎𝑣, 𝜏𝑣) of a node 𝑣 (i.e., 𝑇s = 𝜎𝑣 or

𝑇e = 𝜏𝑣 ), then an induction shows that there exists a hit set of size

≤ ℎ. Next, if the query range is neither a prefix nor a suffix of

the time range of any node, then we can show that there exists

two non-root nodes 𝑣1, 𝑣2 such that 𝜏𝑣1 = 𝜎𝑣2 and that [𝑇s,𝑇e) =
[𝜎𝑣1 , 𝜏𝑣1 ) ⊔ [𝜎𝑣2 , 𝜏𝑣2 ). In this case, [𝑇s,𝑇e) ∩ [𝜎𝑣1 , 𝜏𝑣1 ) is a suffix of

[𝜎𝑣1 , 𝜏𝑣1 ), and [𝑇s,𝑇e) ∩ [𝜎𝑣2 , 𝜏𝑣2 ) is a prefix of [𝜎𝑣2 , 𝜏𝑣2 ). Since 𝑣1, 𝑣2
are not the root, then [𝑇s,𝑇e) has a hit set of size ≤ 2(ℎ−1). Together,
the size of the hit set is ≤ max{2(ℎ− 1), ℎ} = max{2(ℎ− 1), 1}. □

Lemma 4.1 motivates us to require the stream segment tree to

have a small height. We show that the stream segment tree can

indeed have a logarithmic height w.r.t. the time range𝑇 , as formally

stated in Theorem 4.2.

Theorem 4.2 (Logarithmic height). There exists a stream seg-

ment tree structure over range [0,𝑇 ) of height ≤ ⌈log
2
𝑇 ⌉ + 1.

Proof sketch. Using the algorithm in Section 6.2 to append

the tensor slices X0, . . . ,X𝑇−1 one by one, we can build a stream

segment tree over [0,𝑇 ). By Theorem 6.2, this stream segment tree

has height ⌈log
2
𝑇 ⌉ + 1. □

The tree structure in Theorem 4.2 not only exists in theory but

can also be maintained efficiently. We will present an efficient

algorithm to maintain the logarithmic height in a stream update

in Section 6.2. From now on, we will refer to the tree structure in

Theorem 4.2 simply as the “stream segment tree.”

Proposition 4.3 (Space complexity). The space complexity of a

stream segment tree over range [0,𝑇 ) is 𝑂 ((𝑟𝐷 + 𝑟𝑝 )𝑇 + 𝑟𝑇 log𝑇 ).

Proof sketch. In a stream segment tree over the range [0,𝑇 ),
there are 𝑂 (𝑇 ) nodes each of which has 𝑝 − 1 non temporal factor

matrices of the size 𝑂 (𝑟𝐷) and a core tensor of the size 𝑂 (𝑟𝑝 ). In
addition, at each level of the tree, the sum of the sizes of temporal

factor matrices is 𝑂 (𝑟𝑇 ). Therefore, the space complexity of the

stream segment tree is 𝑂 ((𝑝𝑟𝐷 + 𝑟𝑝 )𝑇 + 𝑟𝑇 log𝑇 ). □

Example. An example of our stream segment tree over timespan

[0, 9) is illustrated in Figure 3. It has height 5 = ⌈log
2
9⌉ + 1. Leaf

nodes ⟨1⟩, ⟨3⟩, ⟨6⟩, ⟨7⟩, ⟨11⟩, ⟨12⟩, ⟨14⟩, ⟨15⟩, ⟨20⟩ represent tensor

slices X0, . . . ,X8, respectively. Intermediate nodes store prepro-

cessed results. We will also use this example in the subsequent

sections to illustrate other operations.

5 TUCKET: CORE ALGORITHMS

In this section, we present two core algorithms that will be used

in the operations of TUCKET in Section 6. We describe how to

optimally prune the hit set in Section 5.1 and how to stitch subtensor

decompositions in the hit set in Section 5.2.

5.1 Optimally Pruning the Hit Set

The first core algorithm of TUCKET is finding a small hit set for each

range query. By Lemma 4.1 & Theorem 4.2, we have shown that

the hit set has a small size 𝑂 (log𝑇 ). Although this size cannot be

improved for general operations, here we present a key observation

about the Tucker decomposition of a subtensor and leverage this

observation to further prune the hit set.

Approximating a subtensor decomposition. Here we present

our key observation about the Tucker decomposition of a sub-

tensor. Suppose that a tensor X[𝜎𝑣 ,𝜏𝑣 ) has Tucker decomposition

H𝑣 ×1 𝑽 (1)𝑣 · · · ×𝑝 𝑽
(𝑝 )
𝑣 . Due to the low-rank nature of real-world

tensors [44], they can typically be well approximated by Tucker

decomposition:

X[𝜎𝑣 ,𝜏𝑣 ) ≈H𝑣 ×1 𝑽 (1)𝑣 · · · ×𝑝 𝑽
(𝑝 )
𝑣 . (6)

We observe that for real-world tensors, there typically exists a

threshold 0 < 𝜃 < 1 (see Section 8.5) such that for a sub-range

[𝑇 ′
s
,𝑇 ′

e
) ⊆ [𝜎𝑣, 𝜏𝑣) with

|︁|︁[𝑇 ′
s
,𝑇 ′

e
)
|︁|︁ ≥ 𝜃

|︁|︁[𝜎𝑣, 𝜏𝑣)|︁|︁ (i.e., the sub-range
[𝑇 ′
s
,𝑇 ′

e
) is not too small compared with [𝜎𝑣, 𝜏𝑣)), the subtensor

X[𝑇 ′
s
,𝑇 ′
e
) can be well approximated by

X[𝑇 ′
s
,𝑇 ′
e
) = (X[𝜎𝑣 ,𝜏𝑣 ) )[𝑇 ′s −𝜎𝑣 ,𝑇

′
e
−𝜎𝑣 ) (7)

≈ (H𝑣 ×1 𝑽 (1)𝑣 ×2 𝑽 (2)𝑣 · · · ×𝑝 𝑽
(𝑝 )
𝑣 )[𝑇 ′

s
−𝜎𝑣 ,𝑇

′
e
−𝜎𝑣 ) (8)

= H𝑣 ×1 (𝑽 (1)𝑣 )[𝑇 ′
s
−𝜎𝑣 ,𝑇

′
e
−𝜎𝑣 ) ×2 𝑽

(2)
𝑣 · · · ×𝑝 𝑽

(𝑝 )
𝑣 . (9)

This almost yields an approximate Tucker decomposition ofX[𝑇 ′
s
,𝑇 ′
e
) ,

except that the temporal factor matrix (𝑽 (1)𝑣 )[𝑇 ′
s
−𝜎𝑣 ,𝑇

′
e
−𝜎𝑣 ) is not

necessarily column-orthonormal. To make it column-orthonormal,

we can first compute aQR decomposition [21] (𝑽 (1)𝑣 )[𝑇 ′
s
−𝜎𝑣 ,𝑇

′
e
−𝜎𝑣 ) =:˜︁𝑸˜︁𝑹 (where ˜︁𝑸 is column-orthonormal) and then use the reverse as-

sociativity
1
[38] of ×1 to give a Tucker decomposition:

X[𝑇 ′
s
,𝑇 ′
e
) ≈H𝑣 ×1 (𝑽 (1)𝑣 )[𝑇 ′

s
−𝜎𝑣 ,𝑇

′
e
−𝜎𝑣 ) ×2 𝑽

(2)
𝑣 · · · ×𝑝 𝑽

(𝑝 )
𝑣 (10)

= H𝑣 ×1 (˜︁𝑸˜︁𝑹) ×2 𝑽 (2)𝑣 · · · ×𝑝 𝑽
(𝑝 )
𝑣 (11)

= (H𝑣 ×1 ˜︁𝑹) ×1 ˜︁𝑸 ×2 𝑽 (2)𝑣 · · · ×𝑝 𝑽
(𝑝 )
𝑣 , (12)

where the core tensor isH𝑣 ×1 ˜︁𝑹, and the temporal factor matrix is˜︁𝑸 . In this way, we can efficiently compute an approximate Tucker

decomposition of a subtensor X[𝑇 ′
s
,𝑇 ′
e
) using only a QR decomposi-

tion and a mode-1 product and do not need to further divide [𝑇 ′
s
,𝑇 ′

e
)

into smaller sub-ranges. This helps to reduce the size of the hit set.

Formulation of hit set pruning. This key observation motivates

us to consider partial hits. Let 0 < 𝜃 < 1 denote the threshold

above. We call a node 𝑣 ∈ M a partial hit of a range query [𝑇s,𝑇e) if|︁|︁[𝑇s,𝑇e) ∩ [𝜎𝑣, 𝜏𝑣)|︁|︁ ≥ 𝜃
|︁|︁[𝜎𝑣, 𝜏𝑣)|︁|︁ and [𝜎𝑣, 𝜏𝑣) ⊈ [𝑇s,𝑇e); we call it an

1
The reverse associativity means thatZ ×𝑛 𝑨 ×𝑛 𝑩 = Z ×𝑛 (𝑩𝑨) .



Algorithm 1 (Recall): Finding a pruned hit set

Input: current node 𝑣 ; query range [𝑇s,𝑇e)
Output: a pruned hit set of [𝑇s,𝑇e) in the subtree rooted at 𝑣

1: if 𝑣 ∈ L ∪M and

|︁|︁[𝑇s,𝑇e) ∩ [𝜎𝑣, 𝜏𝑣)|︁|︁ ≥ 𝜃
|︁|︁[𝜎𝑣, 𝜏𝑣)|︁|︁ then

2: return {𝑣}
3: end if

4: let 𝑢1, 𝑢2 be the left and right children of 𝑣 , respectively

5: if 𝑇e ≤ 𝜏𝑢1
then

6: return Recall(𝑢1, [𝑇s,𝑇e))
7: else if 𝑇s ≥ 𝜎𝑢2

then

8: return Recall(𝑢2, [𝑇s,𝑇e))
9: else

10: return Recall(𝑢1, [𝑇s,𝑇e)) ∪ Recall(𝑢2, [𝑇s,𝑇e))
11: end if

entire hit of [𝑇s,𝑇e) if [𝜎𝑣, 𝜏𝑣) ⊆ [𝑇s,𝑇e). Using Eq. (12), we can effi-

ciently approximate the Tucker decomposition of X[𝑇s,𝑇e )∩[𝜎𝑣 ,𝜏𝑣 ) .
Hence, we can reduce the size of the hit set by allowing partial hits

in the hit set. Formally, minimizing the size of the hit set S can be

formulated as the following optimization problem:

min

S⊆L∪M
|S|, (13)

s.t. [𝑇s,𝑇e) =
⨆︁
𝑣∈S
[𝑇s,𝑇e) ∩ [𝜎𝑣, 𝜏𝑣), (14)|︁|︁[𝑇s,𝑇e) ∩ [𝜎𝑣, 𝜏𝑣)|︁|︁ ≥ 𝜃

|︁|︁[𝜎𝑣, 𝜏𝑣)|︁|︁, ∀𝑣 ∈ S. (15)

An optimal algorithm for pruning. To solve the formulation

above for hit set pruning, we propose an efficient recursive algo-

rithm that runs in 𝑂 (log𝑇 ) time. The basic idea is as follows. We

start from the root node. If the root node is a partial hit, then we stop

and return the root node as the hit set. Otherwise, we consider its

two children and repeat the procedure above. The overall procedure

is presented in Algorithm 1. Since the height of the stream segment

tree is 𝑂 (log𝑇 ), and Algorithm 1 visits at most two nodes at each

height, then the total running time of Algorithm 1 is 𝑂 (log𝑇 ).
Furthermore, our Theorem 5.1 shows that our Algorithm 1 is

indeed optimal — it can find the smallest hit set that satisfies the

constraints Eqs. (14) & (15).

Theorem 5.1 (Optimality & complexity of Algorithm 1).

Given a range query [𝑇s,𝑇e), Algorithm 1 minimizes the formulation

in Eq. (13) within𝑂 (log𝑇 ) running time and finds a hit set with𝑂 (1)
partial hits and 𝑂 (log𝐿) entire hits, where 𝐿 := 𝑇e −𝑇s.

Proof sketch. Optimality. Note that if the two children of a

node 𝑣 are both in the hit set, then replacing the two children with

the node 𝑣 gives a smaller, valid hit set. Using this fact, it can be

shown that every node in the optimal hit set should not have a

parent node that is also a valid hit. Finally, by analyzing the top-

down procedure of Algorithm 1, we can show that Algorithm 1 can

indeed find such a hit set, and that the hit set cannot be replaced

with a smaller hit set.

Complexity. An induction similar with the proof of Lemma 4.1

shows that the hit set found by Algorithm 1 has 𝑂 (1) partial hits
and 𝑂 (log𝐿) entire hits. Since the height of the stream segment

tree is 𝑂 (log𝑇 ), the number of nodes traversed in the process of

finding the hit set is at most 𝑂 (log𝑇 + log𝐿) = 𝑂 (log𝑇 ). Finally,
as Algorithm 1 performs 𝑂 (1) operations per node traversed, its
time complexity is 𝑂 (log𝑇 ). □

Example.Algorithm 1 is exemplified in Figure 3.When answering a

range query [1, 6) with 𝜃 = 0.7, [0, 4) is a partial hit because | [1, 6)∩
[0, 4) | ≥ 0.7| [0, 4) |, and [4, 6) is an entire hit because [4, 6) ⊆ [1, 6).
For the partial hit [0, 4), we use Eq. (12) to approximate the Tucker

decomposition of the sub-range [1, 6) ∩ [0, 4) = [1, 4).

5.2 Stitching Subtensor Decompositions

Another core algorithm of TUCKET is stitching subtensor decom-

positions in the hit set. Given a range query [𝑇s,𝑇e), suppose that
the (pruned) hit set is S = {𝑣1, . . . , 𝑣𝑠 }, where 𝑠 := |S| denotes
the size of the hit set. For each partial hit, we use Eq. (12) to com-

pute its approximate Tucker decomposition
˜︁Y𝑖 of the subtensor

X[𝑇s,𝑇e )∩[𝜎𝑣𝑖
,𝜏𝑣𝑖 ) ; for each entire hit 𝑣𝑖 , we retrieve its preprocessed

Tucker decomposition
˜︁Y𝑖 := Y𝑣𝑖 . Same as before, here

˜︁Y1, . . . ,˜︁Y𝑠

are just symbols to refer to the Tucker decomposition products.

We aim to efficiently compute an approximate Tucker decomposi-

tion ofX[𝑇s,𝑇e ) using these preprocessed subtensor decompositions˜︁Y1, . . . ,˜︁Y𝑠 .

A key observation is that X[𝑇s,𝑇e )∩[𝜎𝑣𝑖
,𝜏𝑣𝑖 ) ≈

˜︁Y𝑖 due to the low-

rank nature of real-world tensors [44]. This motivates us to express

X[𝑇s,𝑇e ) as a concatenation of the hit set along the temporal mode:

X[𝑇s,𝑇e ) =

⎡⎢⎢⎢⎢⎣
X[𝑇s,𝑇e )∩[𝜎𝑣

1
,𝜏𝑣

1
)

.

.

.
X[𝑇s,𝑇e )∩[𝜎𝑣𝑠 ,𝜏𝑣𝑠 )

⎤⎥⎥⎥⎥⎦ ≈
⎡⎢⎢⎢⎢⎣
˜︁Y1

.

.

.˜︁Y𝑠

⎤⎥⎥⎥⎥⎦ . (16)

Next, we design an efficient algorithm to compute the Tucker de-

composition of X[𝑇s,𝑇e ) by stitching the subtensor decompositions˜︁Y1, . . . ,˜︁Y𝑠 . The key idea here is to leverage the concatenation form

of
˜︁Y :=

⎡⎢⎢⎢⎢⎣
˜︁Y1

.

.

.˜︁Y𝑠

⎤⎥⎥⎥⎥⎦ and again utilize the reverse associativity
1
[38] of the

tensor–matrix product so as to efficiently compute the matriciza-

tions in Tucker-ALS.

Let
˜︁H𝑖 and ˜︁𝑽 (1)𝑖 , . . . ,˜︁𝑽 (𝑝 )𝑖 denote the core tensor and the factor

matrices in
˜︁Y𝑖 , respectively, and let G and 𝑼 (1) , . . . , 𝑼 (𝑝 ) denote

the core tensor and the factor matrices of X[𝑇s,𝑇e ) to be computed,

respectively. Since the optimal update of the factor matrix 𝑼 (𝑛) is
the 𝑟𝑛 leading left singular vectors of the matricization in Eq. (2),

we need to compute this matricization efficiently. Since the con-

catenation is along the temporal mode, we will describe how to

efficiently compute the matricization for the temporal mode and the

non-temporal modes separately. The overall procedure of stitching

subtensor decompositions is presented in Algorithm 2.

Matricization of the temporal mode. Our goal is to compute

the matricization in Eq. (2) without explicitly computing the large

tensor
˜︁Y. First, we rewrite the matricizations of

˜︁Y𝑖 via the matrix

Kronecker product ⊗:
mat1 (˜︁Y𝑖 ) = mat1 ( ˜︁H𝑖 ×1 ˜︁𝑽 (1)𝑖 · · · ×𝑝 ˜︁𝑽 (𝑝 )𝑖 ) (17)

= ˜︁𝑽 (1)𝑖 mat1 ( ˜︁H𝑖 )
𝑝⨂︂

𝑚=2

˜︁𝑽 (𝑚)T𝑖 . (18)

Similarly, we can rewrite the matricization in Eq. (2) as

mat1 (˜︁Y ×1 𝑼 (2)T · · · · · · ×𝑝 𝑼 (𝑝 )T) = mat1 (˜︁Y) 𝑝⨂︂
𝑚=2

𝑼 (𝑚) . (19)



Algorithm 2 (Stitch): Stitching subtensor decompositions

Input: subtensor decompositions
˜︁Y𝑖 := ˜︁H𝑖 ×1 ˜︁𝑽 (1)𝑖 · · · ×𝑝 ˜︁𝑽 (𝑝 )𝑖

of the hit set {𝑣1, . . . , 𝑣𝑠 }

Output: stitched Tucker decomposition of

⎡⎢⎢⎢⎢⎣
˜︁Y1

.

.

.˜︁Y𝑠

⎤⎥⎥⎥⎥⎦
1: randomly initialize 𝑼 (2) , . . . , 𝑼 (𝑝 )

2: repeat

3: obtain 𝒁 (1) using Eq. (22)

4: let 𝑼 (1) be the 𝑟1 leading left singular vectors of 𝒁 (1)

5: 𝑡0 ← 0

6: for 𝑖 ← 1, . . . , 𝑠 do

7: 𝑡𝑖 ← 𝑡𝑖−1 + (𝜏𝑣𝑖 − 𝜎𝑣𝑖 )
8: end for

9: for 𝑛 ← 2, . . . , 𝑝 do

10: obtain 𝒁 (𝑛) using Eq. (27)
11: let 𝑼 (𝑛) be the 𝑟𝑛 leading left singular vectors of 𝒁 (𝑛)

12: end for

13: reshape 𝒁 (𝑝 ) into a tensor Z(𝑝 ) ∈ R𝑟1×···×𝑟𝑝−1×𝐷𝑝

14: G← Z(𝑝 ) ×𝑝 𝑼 (𝑝 )T

15: until converged

16: return (G, 𝑼 (1) , . . . , 𝑼 (𝑝 ) )

Since the matricization of the concatenation
˜︁Y is equal to the con-

catenation of mat1 (˜︁Y𝑖 )’s, then by the mixed-product property
2
[11]

of the Kronecker product, Eq. (19) can be further rewritten as:⎡⎢⎢⎢⎢⎢⎣
˜︁𝑽 (1)
1

mat1 (˜︂H1 ) (
⨂︁𝑝

𝑚=2
˜︁𝑽 (𝑚)T
1
) (
⨂︁𝑝

𝑚=2
𝑼 (𝑚) )

.

.

.˜︁𝑽 (1)𝑠 mat1 (˜︂H𝑠 ) (
⨂︁𝑝

𝑚=2
˜︁𝑽 (𝑚)T𝑠 ) (

⨂︁𝑝

𝑚=2
𝑼 (𝑚) )

⎤⎥⎥⎥⎥⎥⎦ (20)

=

⎡⎢⎢⎢⎢⎢⎣
˜︁𝑽 (1)
1

mat1 (˜︂H1 )
⨂︁𝑝

𝑚=2
(˜︁𝑽 (𝑚)T

1
𝑼 (𝑚) )

.

.

.˜︁𝑽 (1)𝑠 mat1 (˜︂H𝑠 )
⨂︁𝑝

𝑚=2
(˜︁𝑽 (𝑚)T𝑠 𝑼 (𝑚) )

⎤⎥⎥⎥⎥⎥⎦ (21)

=

⎡⎢⎢⎢⎢⎢⎣
mat1 (˜︂H1×1˜︁𝑽 (1)1

×2 (𝑼 (2)T˜︁𝑽 (2)1
) ·· ·×𝑝 (𝑼 (𝑝 )T˜︁𝑽 (𝑝 )1

) )
.
.
.

mat1 (˜︂H𝑠×1˜︁𝑽 (1)𝑠 ×2 (𝑼 (2)T˜︁𝑽 (2)𝑠 ) ·· ·×𝑝 (𝑼 (𝑝 )T˜︁𝑽 (𝑝 )𝑠 ) )

⎤⎥⎥⎥⎥⎥⎦ . (22)

Computintg Eq. (22) only involves small matrices for non-temporal

modes and avoids explicitly computing the large tensor
˜︁Y which

requires 𝑂 (𝑟𝐷𝑝−1 (𝑇𝑒 −𝑇𝑠 )).

Lemma 5.2 (Time complexity of the temporal mode). Com-

puting the matricization of the temporal mode in Eq. (22) takes

𝑂 ((𝑟2𝐷 + 𝑟𝑝+1)𝑠 + 𝑟𝑝𝐿) time where 𝐿 = 𝑇e −𝑇s.

Proof sketch. Eq. (22) consists of three computations whose

costs are as follows: for 𝑛 = 2, ..., 𝑝 and 𝑖 = 1, ..., 𝑠 , (1) matrix multi-

plications 𝑼 (𝑛)T˜︁𝑽 (𝑛)𝑖 , (2) tensor-matrix products between
˜︁H𝑖 and

the preceding results 𝑼 (𝑛)T˜︁𝑽 (𝑛)𝑖 , and (3) tensor-matrix products

between the preceding results and matrices ˜︁𝑽 (1)𝑖 take 𝑂 (𝑟2𝐷𝑠),
𝑂 (𝑟𝑝+1𝑠), and𝑂 (𝑟𝑝𝐿) time, respectively. Therefore, the complexity

for computing Eq. (22) is 𝑂 ((𝑟2𝐷 + 𝑟𝑝+1)𝑠 + 𝑟𝑝𝐿). □

2
The mixed-product property means that (𝑨 ⊗ 𝑩) (𝑪 ⊗ 𝑫 ) = (𝑨𝑪 ) ⊗ (𝑩𝑫 ) .

Matricization of the non-temporal modes. For a non-temporal

mode 𝑛 = 2, . . . , 𝑝 , the matricization is different from Eq. (22) be-

cause the concatenation is along the temporal mode. Nevertheless,

we can still consider using the Kronecker product to rewrite the

matricization in Eq. (2) as:

mat𝑛 (˜︁Y)⨂︂
𝑚≠𝑛

𝑼 (𝑚) = [mat𝑛 (˜︁Y1), . . . ,mat𝑛 (˜︁Y𝑠 )]
⨂︂
𝑚≠𝑛

𝑼 (𝑚) . (23)

Let 𝑡0 := 0, and 𝑡𝑖 := 𝑡𝑖−1 + (𝜏𝑣𝑖 − 𝜎𝑣𝑖 ) for 𝑖 = 1, . . . , 𝑠 . Then, each

hit node 𝑣𝑖 corresponds to the subtensor
˜︁Y[𝑡𝑖−1,𝑡𝑖 ) . By splitting the

temporal factor matrix as 𝑼 (1) =

⎡⎢⎢⎢⎢⎢⎣
𝑼 (1)[𝑡

0
,𝑡
1
)

.

.

.
𝑼 (1)[𝑡𝑠−1,𝑡𝑠 )

⎤⎥⎥⎥⎥⎥⎦ and using the mixed-

product property of the Kronecker product again, we can further

rewrite Eq. (23) as

𝑠∑︂
𝑖=1

mat𝑛 (˜︁Y𝑖 )
(︃
𝑼 (𝑛)[𝑡𝑖−1,𝑡𝑖 ) ⊗

⨂︂
𝑚≠1,𝑛

𝑼 (𝑚)
)︃

(24)

=

𝑠∑︂
𝑖=1

˜︁𝑽 (𝑛)𝑖 mat𝑛 ( ˜︁H𝑖 )
(︃⨂︂
𝑚≠𝑛

˜︁𝑽 (𝑚)T𝑖

)︃ (︃
𝑼 (1)[𝑡𝑖−1,𝑡𝑖 ) ⊗

⨂︂
𝑚≠1,𝑛

𝑼 (𝑚)
)︃
(25)

=

𝑠∑︂
𝑖=1

˜︁𝑽 (𝑛)𝑖 mat𝑛 ( ˜︁H𝑖 )
(︃
(˜︁𝑽 (1)T𝑖 𝑼 (1)[𝑡𝑖−1,𝑡𝑖 ) ) ⊗

⨂︂
𝑚≠1,𝑛

(˜︁𝑽 (𝑚)T𝑖 𝑼 (𝑚) )
)︃
.

(26)

Finally, we rewrite the Kronecker product form in Eq. (26) back to

the matricization form:

𝑠∑︂
𝑖=1

mat𝑛 ( ˜︁H𝑖 ×1 (𝑼 (1)T[𝑡𝑖−1,𝑡𝑖 )
˜︁𝑽 (1)𝑖 )

×2 (𝑼 (2)T˜︁𝑽 (2)𝑖 ) · · · ×𝑛−1 (𝑼 (𝑛−1)T˜︁𝑽 (𝑛−1)𝑖 ) ×𝑛 ˜︁𝑽 (𝑛)𝑖

×𝑛+1 (𝑼 (𝑛+1)T˜︁𝑽 (𝑛+1)𝑖 ) · · · ×𝑝 (𝑼 (𝑝 )T˜︁𝑽 (𝑝 )𝑖 )) . (27)

Computing Eq. (27) only involves small matrices for non-temporal

modes and avoids explicitly computing the large tensor
˜︁Y.

Lemma 5.3 (Time complexity of the non-temporal modes).

Computing the matricization of the non-temporal modes in Eq. (27)

takes 𝑂 (𝑟𝑝𝐷𝑠 + 𝑟2𝐿) time where 𝐿 := 𝑇e −𝑇s.

Proof sketch. Eq. (27) needs four computations: for𝑚 = 2, ..., 𝑛−
1, 𝑛 + 1, ..., 𝑝 and 𝑖 = 1, ..., 𝑠 , (1) matrix multiplications 𝑼 (1)T[𝑡𝑖−1,𝑡𝑖 )

˜︁𝑽 (1)𝑖 ,

(2) matrix multiplications 𝑼 (𝑚)T˜︁𝑽 (𝑚)𝑖 , (3) tensor-matrix products

between
˜︁H𝑖 and the current results 𝑼 (𝑚)T˜︁𝑽 (𝑚)𝑖 , and (4) tensor-

matrix products between the current results and matrices ˜︁𝑽 (𝑛)𝑖 take

𝑂 (𝑟2𝐿),𝑂 (𝑟2𝐷𝑠),𝑂 (𝑟𝑝+1𝑠), and𝑂 (𝑟𝑝𝐷𝑠) time, respectively. Hence,

the total complexity for computing Eq. (27) is 𝑂 (𝑟𝑝𝐷𝑠 + 𝑟2𝐿). □

Error analysis. We provide an error analysis of our Stitch algo-

rithm in the following Proposition 5.4.

Proposition 5.4 (Error bound). Let X be the concatenation of

subtensors X(𝑖 ) (𝑖 = 1, . . . , 𝑠), and let Y(𝑖 ) denote the rank-𝑟 Tucker
decomposition of X(𝑖 ) . Suppose that alternating least squares are

solved optimally, and that X is approximately low-rank (i.e., X =

W+E whereW has Tucker rank ≤ 𝑟 , and
∥E∥F
∥X∥F ≤ 𝜖 for small 𝜖 > 0).

Then, the stitching algorithm finds a rank-𝑟 Tucker decomposition Y

of X with reconstruction error
∥X−Y∥F
∥X∥F ≤ 𝑂 (𝜖).



Proof sketch. Let W(𝑖 )
and E(𝑖 ) denote the part of W and

E corresponding to the time range of X(𝑖 ) , respectively. Then,
∥X(𝑖 ) −Y(𝑖 ) ∥F ≤ ∥X(𝑖 ) −W(𝑖 ) ∥F = ∥E(𝑖 ) ∥F for all 𝑖 . Let ˜︁Y denote

the concatenation of Y(𝑖 ) . Thus,

∥X − ˜︁Y∥F ≤ ⌜⎷
𝑠∑︂
𝑖=1

∥E(𝑖 ) ∥2
F
= ∥E∥F ≤ 𝜖 ∥X∥F . (28)

Since Y is the Tucker decomposition of
˜︁Y, then

∥X − Y∥F ≤ ∥X − ˜︁Y∥F + ∥˜︁Y − Y∥F ≤ 𝜖 ∥X∥F + ∥˜︁Y −W∥F
≤ 𝜖 ∥X∥F + ∥˜︁Y −X∥F + ∥X −W∥F ≤ 3𝜖 ∥X∥F . □

Proposition 5.4 implies that the reconstruction error of our

Stitch algorithm is very close to the error of computing Tucker

decomposition from scratch via TuckerALS and does not depend

on the number 𝑠 of subtensors to be stitched.

6 TUCKET: OPERATIONS

Having described our design of the data structure in Section 4 and

two core algorithms in Section 5, we next introduce how to answer

Tucker decomposition range queries in Section 6.1 and how to

maintain the tree after appending a tensor slice in Section 6.2.

6.1 Querying over a Time Range

A query over time range [𝑇s,𝑇e) asks to find the Tucker decom-

position of the subtensor X[𝑇s,𝑇e ) . Equipped with the two core

algorithms in Section 5, we are ready to present the algorithm

for answering the range query. First, we use Algorithm 1 w.r.t.

the root of the stream segment tree to find an optimally pruned

hit set S ⊆ L ∪M. For each partial hit, we use Eq. (12) to com-

pute its approximate Tucker decomposition
˜︁Y𝑖 of the subtensor

X[𝑇s,𝑇e )∩[𝜎𝑣𝑖
,𝜏𝑣𝑖 ) ; for each entire hit 𝑣𝑖 , we retrieve its preprocessed

Tucker decomposition
˜︁Y𝑖 := Y𝑣𝑖 . Same as before, here

˜︁Y1, . . . ,˜︁Y𝑠

are just symbols to refer to the Tucker decomposition products.

Finally, we use Algorithm 2 to stitch the subtensor decompositions˜︁Y1, . . . ,˜︁Y𝑠 into the Tucker decomposition G×1 𝑼 (1) · · · ×𝑝 𝑼 (𝑝 ) of
the queried subtensor X[𝑇s,𝑇e ) .

The overall procedure can be illustrated using the example in

Figure 3. When answering a range query [𝑇s,𝑇e) = [1, 6) with
𝜃 = 0.7, first we use Algorithm 1 to divide [1, 6) into two sub-

ranges [1, 4) (a partial hit of [0, 4)) and [4, 6) (an entire hit). Since

[1, 4) is a partial hit of [0, 4), then we use Eq. (12) to approximate

the Tucker decomposition of [1, 4). Finally, we use Algorithm 2 to

stitch the decompositions ofX[1,4) andX[4,6) into an approximate

Tucker decomposition of [1, 6).

Proposition 6.1 (Time complexity). Given a query [𝑇s,𝑇e),
TUCKET performs Recall and Stitch operations and takes𝑂 (𝑟𝑝𝐷𝑠+
𝑟2𝑝−2 (𝐷+𝐿)+log𝑇 ) time overall, where the query length 𝐿 := 𝑇e−𝑇s,
and the hit set size 𝑠 = 𝑂 (log𝐿).

Proof sketch. For each iteration, there are five computations:

(1) the Recall algorithm, (2) the matricization of the temporal

mode, (3) the matricization of 𝑝 − 1 = 𝑂 (1) non-temporal modes,

(4) Singular value decomposition 𝑝 times, and (5) the computation

for updating core tensor. Therefore, the overall time complexity is

𝑂 (𝑟𝑝𝐷𝑠 + 𝑟2𝑝−2𝐷 + 𝑟2𝑝−2𝐿 + log𝑇 ). □

Algorithm 3 (Insert): Inserting a leaf node

Input: current node 𝑣 ; current time 𝑇 ; tensor slice X𝑇

1: if 𝜎𝑣 = 𝑇 and 𝜏𝑣 = 𝑇 + 1 then
2: preprocess the Tucker decomposition Y𝑣 of X𝑇

3: P ← P \ {𝑣}
4: L ← L ∪ {𝑣}
5: else

6: 𝜇 ←
⌊︁𝜎𝑣+𝜏𝑣

2

⌋︁
7: if 𝑇 < 𝜇 then

8: if 𝑣 does not have a left child 𝑢1 then

9: create a left child 𝑢1 ∈ P with [𝜎𝑢1
, 𝜏𝑢1
) ← [𝜎𝑣, 𝜇)

10: end if

11: Insert(𝑢1,𝑇 ,X𝑇 )
12: else

13: if 𝑣 does not have a right child 𝑢2 then

14: create a right child 𝑢2 ∈ P with [𝜎𝑢2
, 𝜏𝑢2
) ← [𝜇, 𝜏𝑣)

15: end if

16: Insert(𝑢2,𝑇 ,X𝑇 )
17: if 𝜏𝑣 = 𝑇 + 1 then
18: Y𝑣 ← Stitch({Y𝑢1

,Y𝑢2
}) via Algorithm 2

19: P ← P \ {𝑣}
20: M ←M ∪ {𝑣}
21: end if

22: end if

23: end if

Algorithm 4 (Append): Appending a tensor slice

Input: current root node 𝑟 ; current time 𝑇 ; tensor slice X𝑇

Output: the root after appending

1: if 𝑇 = 0 then

2: create a node 𝑟 ′ ∈ P with [𝜎𝑟 ′ , 𝜏𝑟 ′ ) ← [0, 1)
3: 𝑟 ← 𝑟 ′

4: else if 𝑇 = 𝜏𝑟 then

5: create a node 𝑟 ′ ∈ P with [𝜎𝑟 ′ , 𝜏𝑟 ′ ) ← [0, 2𝜏𝑟 )
6: let 𝑟 be the left child of 𝑟 ′

7: 𝑟 ← 𝑟 ′

8: end if

9: Insert(𝑟,𝑇 ,X𝑇 ) via Algorithm 3

10: return 𝑟

6.2 Appending a Tensor Slice

Appending a tensor slice X𝑇 extends the timespan from [0,𝑇 ) to
[0,𝑇 + 1). To process this operation, we need to (i) maintain the

stream segment tree structure and (ii) update the Tucker decompo-

sition of nodes in the tree. Due to the special structure of the stream

segment tree, we cannot maintain a logarithmic height via rotation

operations like typical balanced search trees [22]. To address this

issue, we leverage the fact that we have only the appending oper-

ation but no arbitrary insertion operations. Our key idea here is

to insert not only a leaf node but also possibly a root node so as

to maintain the logarithmic height. In the following, we will first

describe the case where we do not need to insert a root node and

then discuss the case where we need to insert a root node.

If the root node 𝑟 is a placeholder node, then its time range [0, 𝜏𝑟 )
includes X𝑇 . Thus, we can insert X𝑇 into the tree. The insertion

procedure is a recursive algorithm starting from the root 𝑟 . Suppose

that we are currently at a node 𝑣 . Let 𝑢1, 𝑢2 denote the left and



right children of 𝑣 , respectively. If 𝑇 < 𝜏𝑢1
, then we insert X𝑇 into

the subtree rooted at 𝑢1. Otherwise, we need to insert X𝑇 into the

subtree rooted at 𝑢2. If either 𝑢1 or 𝑢2 does not exist yet, we create

that node before insertion. After insertion, we revise the type of

the node 𝑣 . If 𝑇 = 𝜏𝑣 − 1, then the range [𝜎𝑣, 𝜏𝑣) has been fully

observed, so we let the node 𝑣 become an intermediate node. The

overall insertion procedure is formally presented in Algorithm 3.

Meanwhile, if the root node 𝑟 is already an intermediate node,

then its time range [0, 𝜏𝑟 ) has been fully observed. In this case, we

create a new placeholder node 𝑟 ′ with time range [0, 𝜏𝑟 ′ ) := [0, 2𝜏𝑟 ′ ),
let node 𝑟 be the left child of 𝑟 , and let 𝑟 ′ be the new root. Since the

new root 𝑟 ′ is now a placeholder node, then we use Algorithm 3 to

insertX𝑇 into the tree. The overall appending procedure is formally

presented in Algorithm 4.

The overall procedure can be exemplified using Figure 3. Suppose

that the current timespan is [0, 8) (i.e., the current root is the node
⟨8⟩), and that we want to append the slice X8. Since the root node

⟨8⟩ is an intermediate node, then we create a new root ⟨16⟩ as an
intermediate node and let ⟨8⟩ be its left child. Then, we insert X8

into the new root. As 𝑇 = 8, we need to insert X8 into the right

child of ⟨16⟩. Since ⟨16⟩ does not have a right child yet, we create

a new intermediate node ⟨17⟩ as its right child and insert X8 into

⟨17⟩. We repeat this procedure until it reaches the leaf node ⟨20⟩.
We preprocess the Tucker decomposition of X[8,9) via Tucker-ALS
and store it at node ⟨20⟩.

Theorem 6.2 (Logarithmic height). If we use the algorithm

above for timespan [0,𝑇 ), then it can construct a stream segment tree

of height ⌈log
2
𝑇 ⌉ + 1.

Proof sketch. We can use an induction on 𝑇 to show that at

time 𝑇 , the number of new leaf nodes that can be inserted into the

sub-tree rooted at each node 𝑣 is max{𝜏𝑣 −𝑇, 0}. This implies that

the number of leaf nodes in a stream segment tree of height ℎ is

greater than the number of leaf nodes of a perfect binary tree of

height ℎ − 1 and at most that of a perfect binary tree of height ℎ. It

follows that the height of a stream segment tree is ⌈log
2
𝑇 ⌉ + 1. □

Proposition 6.3 (Time complexity). When appending a ten-

sor slice X𝑇 , the amortized and worst-case time complexities are

𝑂 (𝑟𝐷𝑝−1 + 𝑟2𝑝−2 (𝐷 + log𝑇 )) and𝑂 (𝑟𝐷𝑝−1 + 𝑟2𝑝−2 (𝐷 log𝑇 +𝑇 )),
respectively.

Proof sketch. We analyze the worst-case and amortized com-

plexities of a stream segment tree. The amortized complexity is the

time complexity of creating a stream segment tree divided by 𝑇 .

We preprocess 𝑇 tensor slices of leaf nodes with the complexity

𝑂 (𝑟𝐷𝑝−1𝑇 ). For intermediate nodes, we perform 𝑂 (𝑇 ) stitch op-

erations with the complexity 𝑂 (𝑟2𝑝−2𝐷𝑇 + 𝑟2𝑝−2𝑇 log𝑇 ). Hence,
the amortized complexity is𝑂 (𝑟𝐷𝑝−1 + 𝑟2𝑝−2𝐷 + 𝑟2𝑝−2 log𝑇 ). Ap-
pending a tensor sliceX𝑇 requires three computations: (1) perform-

ing Tucker-ALS of the tensor slice, (2) updating the non-temporal

factor matrices, and (3) updating the temporal factor matrices.

Hence, the worst-case complexity of appending a tensor slice X𝑇

is𝑂 (𝑟𝐷𝑝−1 + 𝑟2𝑝−2𝐷 log𝑇 + 𝑟2𝑝−2𝑇 ) which is the sum of the com-

plexities of the three computations. □

Table 3: Summary of real-world tensor time series datasets.

Dataset #Entries Shape Modes

Air Quality 47M 21000 × 376 × 6 (time, location, air pollutant)

Traffic 212M 2033 × 1084 × 96 (time, frequency, sensor)

US Stock 739M 2000 × 4347 × 85 (time, company, stock feature)

KR Stock 875M 3000 × 3432 × 85 (time, company, stock feature)

7 IMPLEMENTATION

Since the bottleneck of Tucker decomposition is the tensor numeri-

cal operations, we speed up these computations using a graphical

processing unit (GPU). Though originally designed to accelerate

computer graphics and image processing, modern GPUs are power-

ful in parallelizing dense numerical operations in general scientific

computing. To develop a prototype of our TUCKET that is compat-

ible across various platforms, we choose the PyTorch [53] CUDA

[45] library to set up and run GPU operations. Although Python

execution is relatively slow compared with many other program-

ming languages, it does not affect the overall performance much

because the tensor operations are typically much more expensive

than Python execution.

8 EXPERIMENTAL EVALUATION

In this section, we evaluate our TUCKET by comparing it with

state-of-the-art methods on four large-scale real-world tensor time

series datasets. We summarize our evaluation results from our

experiments as follows:

(i) TUCKET consistently achieves the lowest latency over all

query ranges on real-world tensor time series data (Sec-

tion 8.3).

(ii) We empirically demonstrate that TUCKET constructs the

whole tree in nearly linear time and consumes nearly linear

space in total (Section 8.3).

(iii) The reconstruction error of TUCKET is much smaller than

D-Tucker and Zoom-Tucker and is comparable with the

brute-force method Tucker-ALS (Section 8.4).

(iv) Our new stitching algorithm is more GPU-parallelizable

and more numerically stable than that of Zoom-Tucker

(Section 8.5).

(v) The pruning threshold 𝜃 = 0.7 can achieve both high effi-

ciency and accuracy in our experiments (Section 8.5).

8.1 Experimental Settings

Datasets. We use four large-scale real-world tensor time series

datasets, which are summarized in Table 3. (D1) Air Quality data

is represented as 3-way tensor time series (time, location, air pol-

lutant). It is collected from the Air Korea
3
website. (D2) Traffic

data
4
[56] is 3-way tensor time series (time, frequency, sensor) rep-

resenting a collection of traffic volume measurements around Mel-

bourne. (D3 &D4)We use daily stock features (e.g., prices, volumes,

and technical indicators) on the U.S. and Korean stock markets, re-

spectively, to build 3-way tensor time series (time, company, stock

feature). (D5) To evaluate the scalability w.r.t. the number 𝑝 of

modes, we generate synthetic tensors with the following sizes: (1)

3
https://www.airkorea.or.kr/web/

4
https://github.com/florinsch/BigTrafficData

https://www.airkorea.or.kr/web/
https://github.com/florinsch/BigTrafficData
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Figure 4: Comparison in the latency of range queries. Our TUCKET (green dotted line) consistently achieves the lowest latency

for all query ranges while the performance of other methods varies drastically across datasets.
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Figure 5: Scalability tests
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Figure 6: Comparison in the relative error of range queries. In contrast to D-Tucker and Zoom-Tucker, our TUCKET (green

dotted line) consistently achieves comparable error with that of Tucker-ALS for all query ranges.
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Figure 7: Comparison with the interval tree and the R-tree

in terms of the Append operation.
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Figure 8: Comparison with Zoom-Tucker’s stitching
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Figure 9: Latency and relative error v.s. pruning threshold

1000×1000×1000, (2) 1000×100×100×100, (3) 1000×100×100×10×10,
(4) 1000×100×10×10×10×10, (5) 1000×10×10×10×10×10×10.
Evaluation metrics. Regarding efficiency, since no baseline meth-

ods support batch operations, we do not report the throughput.

Instead, we report the latency (in seconds) of each operation.

Regarding accuracy, for each range query [𝑇s,𝑇e), we report the
relative error between each method 𝐴 and Tucker-ALS:

∥X[𝑇s,𝑇e ) − Y𝐴∥F
∥X[𝑇s,𝑇e ) − YTucker-ALS

∥F
− 1, (29)

where Y
Tucker-ALS

and Y𝐴 denote the reconstructed tensors by

Tucker-ALS and the method 𝐴, respectively.



Platform. We conduct all experiments in the Docker environment

on an Ubuntu 20.04.6 LTS cloud server with an Intel Xeon CPU @

2.00 GHz and an NVIDIA P100 16GB GPU.

Evaluation framework. When comparing the performance of

TUCKET with baselines, since no baseline methods support range

queries and stream updates simultaneously, we first construct the

data structures of all methods and then run range queries. The

appending operation is evaluated separately in Section 8.3.

Hyperparameters. For alternating least squares, we set the maxi-

mum number of iterations to 20 and the tolerance to 0.01. We set a

target size to 10, except that we set the target size to 5 when the

size of a non-temporal mode is smaller than 10. For TUCKET, we

use the pruning threshold 𝜃 = 0.7 for all datasets.

8.2 Baseline Methods

To evaluate the effectiveness of our proposed TUCKET, we compare

it with state-of-the-art methods for Tucker decomposition. The

baselines are described below.

• Tucker-ALS [62] utilizes alternating least squares opti-

mization to compute Tucker decomposition, thus achiev-

ing the best reconstruction error. However, in our setting,

Tucker-ALS is essentially a brute-force algorithm, unable

to support range queries or streaming updates efficiently.

• D-Tucker [29] decomposes compressed matrices sliced

from the input tensor and further updates the factors and

cores iteratively, which enables a fast and memory-efficient

decomposition of large and dense tensors. Notably, the iter-

ation phase of D-Tucker facilitates its seamless adaptation

to tasks involving stream updates. However, it does not

support range queries. For a fair comparison, we extract

the sub-tensor corresponding to the range query from the

preprocessed slices of D-Tucker.

• Zoom-Tucker [30] supports Tucker decomposition range

queries via block-wise preprocessing and by merging block

results during the query pahse. While Zoom-Tucker demon-

strates efficient performance on range queries, it faces limi-

tations in supporting stream updates. For a fair comparison,

we use block size
𝑇

2⌈log
2
𝑇 ⌉ in Zoom-Tucker, which ensures

that the maximum number of blocks is comparable with

the maximum size of the hit set of TUCKET. Besides that,

since we have enhanced the stitching algorithm of subten-

sor decompositions in Section 5.2, we also use our stitching

algorithm in Zoom-Tucker for a fair comparison.

8.3 Efficiency & Scalability Tests

In this subsection, we evaluate the time and space efficiencies of

TUCKET in range query answering and appending tensor slices.

Efficiency of range query answering w.r.t. query length 𝐿.

As shown in Figure 4, TUCKET consistently achieves the lowest

latency compared to all baseline methods, with its latency remain-

ing almost stable regardless of the query range. In contrast, the

latency of baselines increases dramatically as the query range ex-

pands. On the Air Quality dataset, TUCKET exhibits an average

latency of 0.011 seconds on a GPU, significantly smaller than that

of all other baselines. In Traffic, US Stock, and KR Stock datasets,

although Zoom-Tucker and TUCKET demonstrate similar trends,

our TUCKET outperforms Zoom-Tucker by a considerable margin.

Scalability w.r.t. number 𝑝 of modes. We measure latencies

of TUCKET and baselines by varying the number 𝑝 of modes on

synthetic tensor time series under query lengths 98, 192, and 384

and target rank 𝑟 = 5. As shown in Figure 5a, TUCKET is still the

most efficient method under a higher number 𝑝 of modes. TUCKET

consistently achieves the lowest latency compared to all baselines

across all query lengths and number of modes. TUCKET achieves

5.9 times lower latency than the second-fastest method, Zoom-

Tucker, when the number of modes 𝑝 is 7 and the query length

is 384. This highlights the superiority of our recall and stitching

algorithms in terms of the scalability w.r.t. the number 𝑝 of modes.

Efficiency of query answering w.r.t. timespan 𝑇 .We keep the

query length 𝐿 the same while appending new slices between

queries to increase 𝑇 . The results of latency v.s. timespan 𝑇 on

Air Quality are shown in Figure 5b. We can see that the latency of

range queries almost has no notable change. This validates our time

complexity where the dominant term𝑂 (𝑟𝑝𝐷 log𝐿) scales with only
𝐿 and does not explicitly depend on 𝑇 .

Efficiency of appending tensor slices. We plot the latency of

Append on the Air Quality dataset v.s. the timespan 𝑇 in Figure 5c.

The results validate the amortized time complexity 𝑂 (𝑟𝐷𝑝−1 +
𝑟2𝑝−2 (𝐷 + log𝑇 )) of Append. Notably, Figure 5c shows that the
time complexity is nearly constant w.r.t. 𝑇 . This is because 𝐷 is

typically much greater than log𝑇 as long as 𝑇 is not too large.

Space consumption of our TUCKET. We plot the cumulative

space usage on the Air Quality dataset v.s. the timespan 𝑇 in Fig-

ure 5d. The results validate the space complexity 𝑂 ((𝑟𝐷 + 𝑟𝑝 )𝑇 +
𝑟𝑇 log𝑇 ) of our TUCKET. Notably, Figure 5d shows that the space

complexity is nearly linear w.r.t. 𝑇 . This is because 𝐷 is typically

much greater than log𝑇 as long as 𝑇 is not too large.

8.4 Accuracy of Range Query Answering

We measure relative errors with respect to time range queries.

Figure 6 shows the results. TUCKET consistently has compara-

ble errors to Tucker-ALS which performs Tucker decomposition

from scratch. As 𝑇𝑒 −𝑇𝑠 decreases, TUCKET and Tucker-ALS have

little variation in errors, while the errors of D-Tucker and Zoom-

Tucker increase dramatically. This is because TUCKET effectively

preserves information for short time ranges using the proposed

stream segment tree in the preprocessing phase, whereas D-Tucker

and Zoom-Tucker compromise the accuracy for short time ranges

in the preprocessing phase.

8.5 Ablation Studies

To further understand TUCKET, we conduct the following ablation

studies: (i) comparing our stream segment tree with other data

structures, (ii) comparing our new stitching algorithm with that of

Zoom-Tucker, and (iii) analyzing the effect of pruning threshold 𝜃 .

Comparison of data structures. We compare our stream segment

tree with the interval tree [54] (using AVL balancing [3]) and the (1-

dimensional) R-tree [23] (using B-tree balancing [8]) in terms of the

Append operation.We report in Figure 7 the cumulative latency and



the cumulative number of Stitch operations in Append because

the Stitch operation is the bottleneck during Append. We see

that our TUCKET achieves 83.5 times and 3.4 times speedup over

the interval tree and the R-tree, respectively; they need 𝑂 (log𝑇 )
Stitch operations per Append because every node on the path

from the inserted node to the root needs a Stitch. In contrast, our

proposed stream segment tree needs only 1 Stitch (amortized) per

Append because our placeholder nodes need no Stitch.

Comparison of stitching algorithms. We compare our stitch-

ing algorithm with Zoom-Tucker’s stitching algorithm in terms of

latency and relative error by replacing our Stitch (Algorithm 2)

with Zoom-Tucker’s stitching algorithm. In Figure 8a, our stitching

algorithm achieves lower latency than the stitching algorithm of

Zoom-Tucker. This result implies that our stitching algorithm is

more GPU-parallelizable than Zoom-Tucker’s stitching. Figure 8b

shows that our stitching algorithm has lower relative errors than

Zoom-Tucker’s stitching. The error gap widens as the query range

decreases since Zoom-Tucker’s stitching needs to compute the in-

verse for rank-deficient matrices in short query ranges.

Effect of the pruning threshold 𝜃 . We test the model efficiency

and the relative error of TUCKET with respect to the pruning

threshold. We conduct the experiment on the Air Quality dataset.

Figure 9b shows the relative error of TUCKET with respect to the

query range. As we can see, as the 𝜃 value increases, the relative

error consistently decreases for all query ranges. Meanwhile, the

difference between 𝜃 = 0.7 and 𝜃 = 0.9 is tiny. When comparing

𝜃 = 0.7 and 𝜃 = 0.9, 𝜃 = 0.7 is better since it has lower latency than

𝜃 = 0.9 over all the query ranges as shown in Figure 9a. Therefore,

𝜃 = 0.7 is the best choice for balancing efficiency and accuracy

as it allows TUCKET to avoid pruning-induced accuracy loss and

handle a similar number of blocks.

8.6 Case Study

To demonstrate the application of TUCKET, we present a case

study with Air Quality data. We run TUCKET for three time ranges

(March 2015, March 2016, and March 2017) to obtain the location

factor matrices 𝑼 (2) ∈ R376×𝑟 of each time range. Here, the 𝑖-th

row vector of 𝑼 (2) represents the air pollution patterns of the 𝑖-

th location. Then, we perform K-means clustering w.r.t. the row

vectors of 𝑼 (2) to find 5 clusters of the locations.

Clustering results are shown in Figure 1. We can see that some

regions consistently exhibit similar clustering patterns across all

years while some other regions have varying clustering patterns

depending on the year. Regions (A) and (D) had similar patterns in

March 2015 and 2016, but their patterns changed in March 2017.

Meanwhile, regions (B), (C), and (E) had similar clustering patterns

across all years. Region (F) has slightly different clustering patterns

across the years. Air pollution patterns can be attributed to changes

in weather conditions, the occurrence of yellow dust and fine dust,

industrial activity, and traffic volume. TUCKET enables researchers

and practitioners to explore diverse time ranges on Air Quality data

efficiently and accurately.

9 RELATEDWORK

Tensor decomposition. Tensor decompositions have been widely

used for analyzing real-world tensors. Due to their large sizes,

developing efficient and scalable CP methods [6, 7, 15, 27, 42, 70]

and Tucker methods [29, 31, 46, 47, 61] have attracted considerable

interest. The vast majority of these works focus on decomposing

the entire tensor from scratch and thus cannot efficiently answer

range queries. Although Zoom-Tucker [30] supports efficient range

queries, it has an unwilling tradeoff between accuracy and efficiency

due to a fixed block size. In addition to the above methods for

dense tensors, there are plenty of tensor decomposition methods

for sparse tensors where only a few entries are nonzeros. Many

works [34, 35, 41, 48–50, 52, 57, 58, 67] have developed scalable

tensor decomposition for sparse tensors in parallel and distributed

systems. Numerous tensor decomposition methods [14, 18, 43, 60,

66] utilize neural networks for predicting unobserved entries of

sparse tensors. However, they do not support range queries either.

Time series databases. Time series databases utilize various data

structures to handle time-series data. Many time series databases,

including KairosDB [2], Apache IoTDB [64], and LittleTable [55],

are designed based on log-structured merge tree (LSM-tree) [51] for

managing time-series data. Other time series databases, including

InfluxDB [1], BTrDB [5], and EdgeDB [68], utilize their own tree

structures to manage massive time series data. However, none of

these works considers tensor time series or supports tensor decom-

position range queries, which is harder than the simple queries

supported by existing time series databases.

10 CONCLUSION & FUTUREWORK

In this paper, we have proposed a tensor time series data structure

called TUCKET that can efficiently and accurately support range

queries of Tucker decomposition and stream updates to the tensor

time series. To the best of our knowledge, our TUCKET is a first-

of-its-kind method that creatively generalizes the segment tree

to the Tucker decomposition range query problem with stream

updates. We provide (i) fine-grained theoretical guarantees and

(ii) time and space complexities for our proposed method. We also

experimentally show that TUCKET consistently achieves the best

efficiency and accuracy in time range query answering.

Future work includes extending TUCKET to sparse tensors and

to other tensor decompositions such as CANDECOMP/PARAFAC

and PARAFAC2 decompositions, and supporting multi-mode range

queries via nested segment trees [63].
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A PRELIMINARIES ON BASIC TENSOR

OPERATIONS

A 𝑝-way tensor can be viewed as a 𝑝-dimensional array. Each di-

mension of a tensor is called a mode. To distinguish tensors from

matrices and scalars, we use a bold calligraphic font for tensors,

a bold italic font for matrices, and non-bold fonts for scalars. The

indices of vectors, matrices, and tensors start from 0.

The vectorization of a tensorX ∈ R𝐷1×···×𝐷𝑝
is a column vector

where each entry X𝑖1,...,𝑖𝑝 goes to (vec(X)) 𝑗 at

𝑗 =

𝑝∑︂
𝑛=1

𝑖𝑛

𝑝∏︂
𝑚=𝑛+1

𝐷𝑚 . (30)

The mode-𝑛 matricization of a tensor X ∈ R𝐷1×···×𝐷𝑛×···×𝐷𝑝
is a

matrix mat𝑛 (X) ∈ R𝐷𝑛×(𝐷1 · · ·𝐷𝑛−1𝐷𝑛+1 · · ·𝐷𝑝 )
defined by stacking

the mode-𝑛 slices of X into a matrix:

mat𝑛 (X) :=
⎡⎢⎢⎢⎢⎣
(vec(X:,...,:,0,:,...,: ) )T

.

.

.
(vec(X:,...,:,𝐷𝑛−1,:,...,: ) )T

⎤⎥⎥⎥⎥⎦ . (31)

Themode-𝑛 product of a tensor G ∈ R𝑟1×···×𝑟𝑛×···×𝑟𝑝 with a matrix

𝑼 ∈ R𝐷×𝑟𝑛 is a tensorG×𝑛𝑼 ∈ R𝑟1×···×𝑟𝑛−1×𝐷×𝑟𝑛+1×···×𝑟𝑝 defined

by

mat𝑛 (G ×𝑛 𝑼 ) := 𝑼 ·mat𝑛 (G), (32)

where · denotes the matrix multiplication. Besides that, the Frobe-

nius norm ∥ · ∥F of a tensor X ∈ R𝐷1×···×𝐷𝑝
is the square root of

the sum of the squares of all its entries:

∥X∥F :=

⌜⃓⃓⃓⎷𝐷1−1∑︂
𝑖1=0

· · ·
𝐷𝑝−1∑︂
𝑖𝑝=0

X2

𝑖1,...,𝑖𝑝
. (33)

We refer readers to [38] for further details on tensor operations.

B PROOFS

B.1 Proof of Lemma 4.1

Given a stream segment tree of height ℎ and any range query

[𝑇𝑠 ,𝑇𝑒 ), let [𝜎𝑣, 𝜏𝑣) be the time range of the root node 𝑣 . Then,

when we consider how to find a hit set of range query, there are

only three different cases:

(1) The range query [𝑇𝑠 ,𝑇𝑒 ) is a prefix of the time range [𝜎𝑣, 𝜏𝑣),
i.e., 𝑇𝑠 = 𝜎𝑣 .

(2) The range query [𝑇𝑠 ,𝑇𝑒 ) is a suffix of the time range [𝜎𝑣, 𝜏𝑣),
i.e., 𝑇𝑒 = 𝜏𝑣 .

(3) The range query [𝑇𝑠 ,𝑇𝑒 ) is neither a prefix nor a suffix of

the time range [𝜎𝑣, 𝜏𝑣), i.e., 𝑇𝑠 ≠ 𝜎𝑣 and 𝑇𝑒 ≠ 𝜏𝑣 .

For case (1), let 𝑓1 (ℎ) be the size of a hit set on a stream segment

tree of height ℎ. It is evident that 𝑓1 (1) = 1 since the root node

constitutes an entire hit under this circumstance. When ℎ > 1, we

need to consider whether the range query [𝑇𝑠 ,𝑇𝑒 ) can be entirely

contained within the range of the left children. Let 𝑢 represent

the left child of the node 𝑣 . If the query range can be entirely

entained, i.e., 𝑇𝑒 ≤ 𝜏𝑢 , then we should recursively search the hit

set within the sub-tree with 𝑢 as the new root node, implying

𝑓1 (ℎ) ≤ 𝑓1 (ℎ − 1). Otherwise, we simply put the left child 𝑢 into

the hit set and recursively search within the right sub-tree, which

implies 𝑓1 (ℎ) ≤ 𝑓1 (ℎ − 1) + 1. To sum up, we can easily have the

following expression

𝑓1 (ℎ) ≤ 𝑓1 (ℎ − 1) + 1 (34)

Since we have the base case that 𝑓1 (1) = 1, it is easy to prove that

𝑓1 (ℎ) ≤ ℎ. (35)

Similarly, we can also prove that 𝑓2 (ℎ) ≤ ℎ, where 𝑓2 (ℎ) represents
the size of a hit set for case (2).

Now consider case (3) where 𝑓3 (ℎ) is denoted as the size of the

hit set. Suppose 𝑢 is the left child of the node 𝑣 with the time

range of [𝜎𝑢 , 𝜏𝑢 ), if the range query spans the time range of both

the left child and the right child, i.e., 𝑇𝑠 < 𝜏𝑢 < 𝑇𝑒 , then we are

supposed to search for the hit set in both the left sub-tree and the

right sub-tree. Please note that in this situation, the new range

query will be either the prefix or the suffix for those sub-trees,

i.e., 𝑓3 (ℎ) ≤ 𝑓1 (ℎ − 1) + 𝑓2 (ℎ − 1). Conversely, if the range query
are limited within the time range of one sub-tree, then the hit set

should be searched within the sub-tree, i.e., 𝑓3 (ℎ) ≤ 𝑓3 (ℎ − 1). To
summarize, we have the following expression

𝑓3 (ℎ) ≤ 𝑓1 (ℎ − 1) + 𝑓2 (ℎ − 1) ≤ 2(ℎ − 1) . (36)

It follows from the three cases that there exists a hit set of size

≤ max{𝑓1 (ℎ), 𝑓2 (ℎ), 𝑓3 (ℎ)} = max{2(ℎ − 1), ℎ} = max{2(ℎ − 1), 1}.
(37)

B.2 Proof of Theorem 4.2

Using the algorithm in Section 6.2 to append the tensor slices

X0, . . . ,X𝑇−1 one by one, we can build a stream segment tree

over [0,𝑇 ). By Theorem 6.2, this stream segment tree has height

⌈log
2
𝑇 ⌉ + 1.

B.3 Proof of Proposition 4.3

In a stream segment tree over the range [0,𝑇 ), there are𝑂 (𝑇 ) nodes
each of which has 𝑝 − 1 non temporal factor matrices of the size

𝑂 (𝑟𝐷) and a core tensor of the size 𝑂 (𝑟𝑝 ). In addition, at each

level of the tree, the sum of the sizes of temporal factor matrices is

𝑂 (𝑟𝑇 ). Therefore, the space complexity of the stream segment tree

is 𝑂 ((𝑝𝑟𝐷 + 𝑟𝑝 )𝑇 + 𝑟𝑇 log𝑇 ).

B.4 Proof of Theorem 5.1

Optimal hit sets.We aim to prove that Algorithm 1 successfully

finds an optimal solution for Eq. (13). Mathematically, we want

to show that, if there exists a hit set that satisfies the conditions

specified in Eq. (14) and (15), then the size of this hit set must

be greater than or equal to the size of the hit set generated by

Algorithm 1.

First, due to the top-down nature of Algorithm 1, for any node 𝑣

in the hit set generated byAlgorithm 1, its parent node is guaranteed

to be unable to satisfy Eq. (15). Therefore, if there exists a hit set

S′ that satisfies Eq. (14) and Eq. (15), then there is no node in S′
could be the parent node of any node in the hit set S∗ generated
by Algorithm 1. Furthermore, for each node 𝑣 ′ in the hit set S′, we
iteratively search for its parent node along its path to the root node.

If there is no node on this path which belongs to S∗, then the node

𝑣 ′ has no contribution to covering the query range. The reason is

that Algorithm 1 ensures that the hit set S∗ completely covers the

range query. As a result, we can remove the node 𝑣 ′ from the hit

set S′ to make it smaller.

So far, we have successfully proven two properties of an optimal

hit set S𝑜𝑝𝑡 : (1) for any node 𝑣∗ from the hit set S∗ of Algorithm 1,

no node from S𝑜𝑝𝑡 could exist on the path between the node 𝑣∗ and



the root node; (2) for any node 𝑣 in an optimal hit set S𝑜𝑝𝑡 , there
must exist a node 𝑣∗ ∈ S∗ on the path between the root node and

the node 𝑣 . Therefore, the size of this optimal hit set is at least as

large as the size of S∗, which indicating S = S𝑜𝑝𝑡 .
Logarithmic running time. We want to further prove that the

running time of Algorithm 1 is 𝑂 (log𝑇 ). Since Algorithm 1 per-

forms only𝑂 (1) operations at each node, we only need to calculate

the number of nodes traversed in the process of finding any range

query in the segment tree. The proof here is quite similar with B.1.

Similarly, we reconsider the three cases in B.1.

(1) The range query [𝑇𝑠 ,𝑇𝑒 ) is a prefix of the time range [𝜎𝑣, 𝜏𝑣),
i.e., 𝑇𝑠 = 𝜎𝑣 .

(2) The range query [𝑇𝑠 ,𝑇𝑒 ) is a suffix of the time range [𝜎𝑣, 𝜏𝑣),
i.e., 𝑇𝑒 = 𝜏𝑣 .

(3) The range query [𝑇𝑠 ,𝑇𝑒 ) is neither a prefix nor a suffix of

the time range [𝜎𝑣, 𝜏𝑣), i.e., 𝑇𝑠 ≠ 𝜎𝑣 and 𝑇𝑒 ≠ 𝜏𝑣 .

Now, let 𝑔𝑖 (ℎ) represent the number of traversed nodes in a

stream segment tree with a height of ℎ in case (𝑖), 𝑣 represent the

root node, and 𝑢1 and 𝑢2 represent the left children and right chil-

dren of 𝑣 , respectively. Then, for case (1), if the range query can be

entirely contained within the left sub-tree of 𝑢1, then the traversed

nodes will be the current root node 𝑣 and all the nodes traversed

within the left sub-tree, i.e., 𝑔1 (ℎ) ≤ 1+𝑔1 (ℎ−1). Conversely, if the
range query spans the time range of both the left sub-tree and right

sub-tree, then the set of traversed nodes will be the current node

𝑣 , the left children 𝑢1, and all the nodes which will be traversed

within the right sub-tree, i.e., 𝑔1 (ℎ) ≤ 2 + 𝑔1 (ℎ − 1). To sum up, we

have the following expression

𝑔1 (ℎ) ≤ 2 + 𝑔1 (ℎ − 1). (38)

Therefore, considering the base case that 𝑔1 (1) = 1, we have

𝑔1 (ℎ) ≤ 2ℎ − 1. (39)

We can also have the same conclusion for case (2), i.e.,𝑔2 (ℎ) ≤ 2ℎ−1.
As for case (3), if the range query can be contained within the

time range of any sub-tree, then similarly we count the current node

𝑣 and further recursively search within the sub-tree, i.e., 𝑔3 (ℎ) ≤
1 + 𝑔3 (ℎ − 1). Otherwise, please note that in this situation, the new

query range will be either a prefix or suffix of the new sub-tree,

which implies 𝑔3 (ℎ) ≤ 𝑔1 (ℎ − 1) + 𝑔2 (ℎ − 1). To sum up, we have

𝑔3 (ℎ) ≤ 4ℎ − 2. (40)

Therefore, given any stream segment tree with a height of ℎ, the

number of traversed nodes will be 𝑂 (ℎ). Since ℎ = ⌈log
2
𝑇 ⌉ + 1 in

Theorem 6.2, we finally prove that the running time is 𝑂 (log𝑇 ).

B.5 Proof of Lemma 5.2

Eq (22) consists of three computations whose costs are as follows:

for 𝑛 = 2, ..., 𝑝 and 𝑖 = 1, ..., 𝑠 , (1) matrix multiplications 𝑼 (𝑛)T˜︁𝑽 (𝑛)𝑖 ,

(2) tensor-matrix products between
˜︁H𝑖 and the preceding results

𝑼 (𝑛)T˜︁𝑽 (𝑛)𝑖 , and (3) tensor-matrix products between the preced-

ing results and matrices ˜︁𝑽 (1)𝑖 require 𝑂 (𝑠𝑝𝑟2𝐷), 𝑂 (𝑠𝑝𝑟𝑝+1), and
𝑂 (𝑟𝑝 (𝑇𝑒 −𝑇𝑠 )), respectively. Therefore, the complexity for comput-

ing Eq (22) is 𝑂 (𝑠𝑝𝑟2𝐷 + 𝑟𝑝 (𝑇𝑒 −𝑇𝑠 ) + 𝑠𝑝𝑟𝑝+1).

B.6 Proof of Lemma 5.3

In Eq (27), there are four computations: for𝑚 = 2, ..., 𝑛−1, 𝑛+1, ..., 𝑝
and 𝑖 = 1, ..., 𝑠 , (1) matrix multiplications 𝑼 (1)T[𝑡𝑖−1,𝑡𝑖 )

˜︁𝑽 (1)𝑖 , (2) matrix

multiplications 𝑼 (𝑚)T˜︁𝑽 (𝑚)𝑖 , (3) tensor-matrix products between˜︁H𝑖 and the preceding results 𝑼 (𝑚)T˜︁𝑽 (𝑚)𝑖 , and (4) tensor-matrix

products between the preceding results and matrices ˜︁𝑽 (𝑛)𝑖 require

𝑂 (𝑟2 (𝑇𝑒 − 𝑇𝑠 )), 𝑂 (𝑠𝑝𝑟2𝐷), 𝑂 (𝑠𝑝𝑟𝑝+1), and 𝑂 (𝑠𝑟𝑝𝐷), respectively.
Hence, the complexity for computing Eq (27) is 𝑂 (𝑠𝑝𝑟2𝐷 + 𝑠𝑟𝑝𝐷 +
𝑟2 (𝑇𝑒 −𝑇𝑠 ) + 𝑠𝑝𝑟𝑝+1).

B.7 Proof of Proposition 6.1

For each iteration, there are five computations: (1) the Recall al-

gorithm, (2) the matricization of the temporal mode, (3) the ma-

tricization of 𝑝 − 1 non-temporal modes, (4) singular value de-

composition 𝑝 times, and (5) the computation for updating core

tensor. Following the Lemmas 5.2 and 5.3, the first two compu-

tations require 𝑂 (𝑠𝑝2𝑟2𝐷 + 𝑠𝑝𝑟𝑝𝐷 + 𝑝𝑟2 (𝑇𝑒 − 𝑇𝑠 ) + 𝑟𝑝 (𝑇𝑒 − 𝑇𝑠 ) +
𝑠𝑝2𝑟𝑝+1). Since we perform SVD for 𝑝 − 1 matrices of the size

𝐷 × 𝑟𝑝−1 and the matrix of the size (𝑇𝑒 −𝑇𝑠 ) × 𝑟𝑝−1, this requires
𝑂 (𝑝 min(𝑟𝑝−1𝐷2, 𝑟2(𝑝−1)𝐷)+min(𝑟𝑝−1 (𝑇𝑒−𝑇𝑠 )2, 𝑟2(𝑝−1) (𝑇𝑒−𝑇𝑠 )).
It can be expressed as 𝑂 (𝑝𝑟2(𝑝−1)𝐷 + 𝑟2(𝑝−1) (𝑇𝑒 − 𝑇𝑠 )) when
𝐷 > 𝑟𝑝−1 and (𝑇𝑒 −𝑇𝑠 ) > 𝑟𝑝−1. The last computation for a core ten-

sor requires 𝑂 (𝑟𝑝𝐷). Therefore, the time complexity is 𝑂 ((𝑠𝑝2𝑟2 +
𝑠𝑝𝑟𝑝 +𝑝𝑟2(𝑝−1) )𝐷 + (𝑝𝑟2 +𝑟𝑝 +𝑟2(𝑝−1) ) (𝑇𝑒 −𝑇𝑠 ) +𝑠𝑝2𝑟𝑝+1 + log𝑇 )
which is the sum of the complexities of these computations.

B.8 Proof of Theorem 6.2

In this subsection, we will first prove that every insertion of Algo-

rithm 4 is valid, and further prove that the height of the constructed

stream segment tree is ⌈log
2
𝑇 ⌉ + 1 with 𝑇 representing the time

span.

First, to prove a valid insertion is equivalent to prove that, when

a new node is inserted into a segment tree, the segment tree is not

full. Please note that the design of creating nodes and insertion in

Algorithm 4 ensures that, when a new node at the time of 𝑇 are

inserted into the node 𝑣 , the range query [𝜎𝑣, 𝜏𝑣) always contains
the time of𝑇 , i.e., 𝜎 ≤ 𝑇 < 𝜏𝑣 . Therefore, we only need to prove that

for any node 𝑣 in a stream segment tree, the number of new nodes

that can be inserted into the sub-tree rooted at 𝑣 is max{𝜏𝑣 −𝑇, 0}.
Specifically, we choose to mathematical induction to prove the

above statement. When𝑇 = 1, this statement obviously holds since

it means creating the first node for a stream segment tree. Now, let

us assume the statement holds true when 𝑇 = 𝑡0. In this situation,

if a node of 𝑡0 is inserted within a sub-tree rooted at the node 𝑣 ,

Algorithm 4 ensures that 𝜏𝑣 > 𝑡0, which implies max{𝜏𝑣 −𝑡0, 0} > 0.

Then this insertion is valid since there is still space for a new node

within the sub-tree of 𝑣 . After this insertion, we can easily calculate

that the number of new nodes that can still be inserted will be

max{𝜏𝑣 − 𝑡0, 0} − 1 = max{𝜏𝑣 − (𝑡0 + 1), 0}. Therefore, the statement

continues to hold when 𝑇 = 𝑡0 + 1, which completes the proof.

Second, we want to calculate the height of a constructed stream

segment tree. From the previous discussion, we can easily know

that given a stream segment tree with a height of ℎ − 1, nodes can
be continuously added until the stream segment tree is full. Once



the tree becomes full, the attempt to add another node results in

creating a new root node based on Algorithm 4, with the original

root node becoming the node of the left sub-tree. Consequently,

the height of the new segment tree becomes ℎ. Therefore, it is

evident that the number of leaf nodes in a segment tree of height ℎ

is greater than that of a perfect binary tree with height ℎ − 1 and
less than or equal to that of a perfect binary tree with height ℎ.

Then we successfully show that the height of a stream segment

tree is ⌈log
2
𝑇 ⌉ + 1 since the number of leaf nodes is equal to 𝑇 .

B.9 Proof of Proposition 6.3

We analyze the worst-case and amortized complexities of a stream

segment tree. Note that 𝑠 is equal to 2. We omit the number of

iterations for the stitch operation and Tucker decomposition of the

tensor slice for brevity.

First, performing Tucker-ALS of the tensor slice requires𝑂 (𝑝𝑟𝐷𝑝−1).
When we append a tensor slice X𝑇 , the worst-case number of the

stitch operations is𝑂 (log𝑇 ). Then, updating the non-temporal fac-

tormatrices requires𝑂 ((𝑝2𝑟2+𝑝𝑟𝑝+𝑝𝑟2(𝑝−1) )𝐷 log𝑇+𝑝2𝑟𝑝+1 log𝑇 )
derived from the first and third terms of the time complexity in

Proposition 6.1. Similarly, updating the temporal factor matrices

requires 𝑂 ((𝑝𝑟2 + 𝑟𝑝 + 𝑟2(𝑝−1) )𝑇 ) where the sum of the row sizes

of the temporal factor matrices is𝑂 (𝑇 ). Hence, the worst-case com-

plexity of appending a tensor sliceX𝑇 is𝑂 (𝑝𝑟𝐷𝑝−1 + (𝑝2𝑟2 +𝑝𝑟𝑝 +
𝑝𝑟2(𝑝−1) )𝐷 log𝑇 + 𝑝2𝑟𝑝+1 log𝑇 + (𝑝𝑟2 + 𝑟𝑝 + 𝑟2(𝑝−1) )𝑇 ).

The amortized complexity is the time complexity of creating a

stream segment tree divided by 𝑇 . We preprocess 𝑇 tensor slices

of leaf nodes with the complexity 𝑂 (𝑝𝑟𝐷𝑝−1𝑇 ). For intermediate

nodes, we perform 𝑂 (𝑇 ) stitch operations with the complexity

𝑂 ((𝑝2𝑟2+𝑝𝑟𝑝+𝑝𝑟2(𝑝−1) )𝐷𝑇 +𝑝2𝑟𝑝+1𝑇 +(𝑝𝑟2+𝑟𝑝+𝑟2(𝑝−1) )𝑇 log𝑇 ).
Hence, the amortized complexity is 𝑂 (𝑝𝑟𝐷𝑝−1 + (𝑝2𝑟2 + 𝑝𝑟𝑝 +
𝑝𝑟2(𝑝−1) )𝐷 + 𝑝2𝑟𝑝+1 + (𝑝𝑟2 + 𝑟𝑝 + 𝑟2(𝑝−1) ) log𝑇 ).
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