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Abstract

Graph neural networks, despite their impressive performance, are highly vulnerable to
distribution shifts on graphs. Existing graph domain adaptation (graph DA) methods often
implicitly assume a mild shift between source and target graphs, limiting their applicability
to real-world scenarios with large shifts. Gradual domain adaptation (GDA) has emerged as
a promising approach for addressing large shifts by gradually adapting the source model to
the target domain via a path of unlabeled intermediate domains. Existing GDA methods
exclusively focus on independent and identically distributed (IID) data with a predefined
path, leaving their extension to non-IID graphs without a given path an open challenge. To
bridge this gap, we present Gadget, the first GDA framework for non-IID graph data.
First (theoretical foundation), the Fused Gromov-Wasserstein (FGW) distance is adopted
as the domain discrepancy for non-IID graphs, based on which, we derive an error bound
on node, edge and graph-level tasks, showing that the target domain error is proportional
to the length of the path. Second (optimal path), guided by the error bound, we identify
the FGW geodesic as the optimal path, which can be efficiently generated by our proposed
algorithm. The generated path can be seamlessly integrated with existing graph DA methods
to handle large shifts on graphs, improving state-of-the-art graph DA methods by up to 6.8%
in accuracy on real-world datasets.

1

 https://openreview.net/forum?id=dTPBqTKGPs


Published in Transactions on Machine Learning Research (02/2026)

1 Introduction
In the era of big data and AI, graphs have emerged as a powerful tool for modeling relational data. Graph
neural networks (GNNs) have achieved remarkable success in numerous graph learning tasks such as graph
classification Xu et al. (2018), node classification Kipf & Welling (2017), and link prediction Zhang & Chen
(2018). Their superior performance largely relies on the fundamental assumption that training and test graphs
are identically distributed, whereas the large distribution shifts on real-world graphs significantly undermine
GNN performance Li et al. (2022).

To address this issue, graph domain adaptation (graph DA) aims to adapt the trained source GNN model
to a test target graph Wu et al. (2023); Liu et al. (2023a). Promising as it might be, existing graph DA
methods follow a fundamental assumption that the source and target graphs bear mild shifts, while real-world
graphs could suffer from large shifts in both node attributes and graph structure Hendrycks et al. (2021); Shi
et al. (2024). For example, user profiles are likely to vary from different research platforms (e.g., ACM and
DBLP), resulting in attribute shifts on citation networks. In addition, while Instagram users are prone to
connect with close friends, users tend to connect to business partners on LinkedIn, leading to structure shifts
on social networks. To handle large shifts, gradual domain adaptation (GDA) has emerged as a promising
approach Kumar et al. (2020); Wang et al. (2022); He et al. (2023). The key idea is to gradually adapt the
source model to the target domain via a path of unlabeled intermediate domains, such that the mild shifts
between successive domains are easy to handle. Existing GDA approaches exclusively focus on independent
and identically distributed (IID) data, e.g., images, with a predefined path Kumar et al. (2020); Wang
et al. (2022), however, the extension of GDA to non-IID graphs without a predefined path remains an open
challenge. Therefore, a question naturally arises:

How to perform GDA on graphs such that large graph shifts can be effectively handled?

Contributions. In this work, we focus on the unsupervised graph DA and propose Gadget, the first GDA
framework for non-IID graphs with large shifts. An illustration of Gadget is shown in Figure 1. While direct
graph DA fails when facing large shifts (Figure 1(a)), Gadget gradually adapts the GNN model via unlabeled
intermediate graphs based on self-training (Figure 1(b)), achieving significant improvement on graph DA
methods on real-world graphs (Figure 1(c)). Specifically, to measure the domain discrepancy between non-IID
graphs, we adopt the prevalent Fused Gromov-Wasserstein (FGW) distance Titouan et al. (2019) considering
both node attributes and connectivity, such that the node dependency, i.e., non-IID property, of graphs can
be modeled. Afterwards (theoretical foundation), we derive an error bound for graph GDA, revealing the close
relationship between the target domain error and the length of the path. Furthermore (optimal path), based
on the established error bound, we prove that the FGW geodesic minimizing the path length provides the
optimal path for graph GDA. To address the lack of path in graph learning tasks, we propose a fast algorithm
to generate intermediate graphs on the FGW geodesics, which can be seamlessly integrated with various
graph DA baselines to handle large graph shifts. Finally (empirical evaluation), we carry out experiments on
node-level classification, and the results demonstrate the effectiveness of our proposed Gadget, significantly
improving graph DA methods by up to 6.8% in classification accuracy.

2 Related Works

Graph Domain Adaptation. Graph DA transfers knowledge between graphs with different distributions
and can be broadly categorized into data and model adaptation. For data adaptation, shifts between
source and target graphs are mitigated via deep transformation Jin et al. (2023); Sui et al. (2023), edge
re-weighting Liu et al. (2023a) and graph alignmentLiu et al. (2024a). For model adaptation, various general
domain discrepancies, e.g., MMD Gretton et al. (2012) and CORAL Sun et al. (2016), and graph domain
discrepancies Zhu et al. (2021); Wu et al. (2023); You et al. (2023), are proposed to align the source and target
distributions. In addition, adversarial approaches Dai et al. (2022); Zhang et al. (2019) learn domain-adaptive
embeddings that are robust to domain shifts. However, existing graph DA methods only handle mild shifts
between source and target, limiting their application to real-world large shifts.

Gradual Domain Adaptation. GDA tackles large domain shifts by leveraging gradual transitions along
intermediate domains. GDA is first studied in Kumar et al. (2020), where the self-training paradigm and
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Figure 1: An illustration of graph GDA. Figures (a-b) show the node embeddings, whose colors (blue and red)
indicate classes and shapes (• and ×) indicate domains, and the decision boundary. (a): Direct adaptation
fails when facing large shifts as all target nodes in class 0 (×) are misclassified. (b): Gradual adaptation
successfully handles large shift by decomposing it into intermediate domains on the FGW geodesics with
mild shifts, where all target nodes in class 0 (×) are correctly separated from those in class 1 (×). (c): Bars
w/ and w/o hatches show the performance of direct adaptation and GDA, respectively. Number over bars
are the absolute improvement on accuracy. Our proposed Gadget significantly improves various graph DA
methods on real-world datasets.
its error bound, are proposed. More in-depth theoretical insights Wang et al. (2022) identify optimal paths,
achieving trade-offs between efficiency and effectiveness. More recent studies generalize GDA to scenarios
without well-defined intermediate domain by either selecting from a candidate pool Chen & Chao (2021) or
generating from scratch He et al. (2023). However, existing GDA methods exclusively focus on IID data,
whereas the extension to non-IID graph data is largely un-explored.

3 Preliminaries

In this section, we first introduce the notations in Section 3.1, based on which, preliminaries on the FGW
space and graph DA are introduced in Sections 3.2 and 3.3, respectively.

3.1 Notations

We use bold uppercase letters for matrices (e.g., A), bold lowercase letters for vectors (e.g., s), calligraphic
letters for sets (e.g., G), and lowercase letters for scalars (e.g., α). The element (i, j) of a matrix A is denoted
as A(i, j). The transpose of A is denoted by the superscript T (e.g., AT).

We use X for feature space and Y for prediction space, with their respective norms as ∥ · ∥X and ∥ · ∥Y . A
graph G = (V, A, X) has node set V , adjacency matrix A ∈ R|V|×|V| and node feature matrix X ∈ X |V|. Let
G denote the space of all graphs, a GNN is a function f : G → Y |V| mapping a graph G ∈ G to the prediction
space Y. We denote the source graph by G0 and the target graph by G1. We use subscripts n, e, g to denote
node-level, edge-level and graph-level tasks, respectively.

The simplex histogram with n bins is denoted as ∆n = {µ ∈ R+
n |
∑n

i=1 µ(i) = 1}. We denote the probabilistic
coupling as Π(·, ·), and the inner product as ⟨·, ·⟩. We use δx to denote the Dirac measure in x. For simplicity,
we denote the set of positive integers no greater than n as N+

≤n.

3.2 Fused Gromov–Wasserstein (FGW) Space

The FGW distance serves as a powerful measure for non-IID graph data by considering both node attributes
and connectivity. Formally, the FGW distance can be defined as follows.
Definition 1 (FGW distance: Peyré et al. (2016; 2019); Titouan et al. (2019)). Given two graphs G0, G1

represented by probability measures µ0 =
∑|V0|

i=1 hiδ(vi,X0(vi)), µ1 =
∑|V1|

j=1 gjδ(uj ,X1(uj)), where h ∈ ∆|V0|, g ∈
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∆|V1| are histograms, a cross-graph matrix M ∈ R|V0|×|V1| measuring cross-graph node distances based
on attributes, and two intra-graph matrices C0 ∈ R|V0|×|V0|, C1 ∈ R|V1|×|V1| measuring intra-graph node
similarity based on graph structure, the FGW distance dFGW;q,α(G0, G1) is defined as:

dFGW;q,α(G1, G2) = min
S∈Π(µ0,µ1)

(εG1,G2(S))
1
q , where

εG1,G2(S)=
∑

u∈V0
v∈V1

(1−α)M(u, v)qS(u, v)+
∑

u,u′∈V0
v,v′∈V1

α|C0(u, u′)−C1(v, v′)|qS(u, v)S(u′, v′), (1)

where q and α are the order and weight parameters of the FGW distance, respectively.

Intuitively, the FGW distance calculates the optimal matching S between two graphs in terms of both
attribute distance M and node connectivity C0, C1. Following common practice Titouan et al. (2019); Zeng
et al. (2024c), we adopt q = 2 and use the adjacency matrix Ai as the intra-graph matrices Ci. For brevity,
we omit the subscripts q, α and use dFGW to denote dFGW;q,α.

Since the FGW distance is only a pseudometric, we follow a standard procedure Howes (2012) to define an
induced metric d∗

FGW. We start with the FGW equivalence class defined as follows.
Definition 2 (FGW equivalence class). Given two graphs G0, G1, the FGW equivalence relation ∼ is defined
as G0 ∼ G1, iff dFGW(G0, G1) = 0. The FGW equivalence class w.r.t. ∼ is defined as JGK := {G′ :G′ ∼G}. The
FGW space is defined as G/∼ = {JGK : G ∈ G}.

Afterwards, the induced metric d∗
FGW is defined by d∗

FGW(JG0K, JG1K) = dFGW(G0, G1), which measures the
distance between two FGW equivalence classes. The FGW geodesics is defined as follows
Definition 3 (FGW geodesic). A curve γ : [0, 1] → G/∼ is an FGW geodesic from JG0K to JG1K iff γ(0) = JG0K,
γ(1) = JG1K, and for every λ0, λ1 ∈ [0, 1],

d∗
FGW(γ(λ0), γ(λ1)) = |λ0 − λ1| · d∗

FGW(JG0K, JG1K).

Intuitively, the FGW geodesic is the shortest line directly linking the source and target graph. To simplify
notation, we use JGK and G interchangeably for the rest of the paper.

3.3 Unsupervised Graph Domain Adaptation

Unsupervised graph DA aims to adapt a GNN model trained on a labeled source graph to an unlabeled
target graph, which can be formally defined as follows.
Definition 4 (Unsupervised graph DA). Given a source graph G0 with labels Y0, where Y0 ∈ Y |V0|

n for
node-level task, Y0 ∈ Y |V0|×|V0|

e for edge-level tasks and Y0 ∈ Yg for graph-level tasks, and a target graph G1.
Unsupervised graph DA aims to train a model f using the labeled source graph (G0, Y0) and the unlabeled
target graph G1 to accurately predict target labels Ŷ1 = f(G1).

However, existing graph DA methods fundamentally assume mild shifts between source and target graphs.
To handle large shifts, we introduce the idea of GDA to graph DA, which gradually adapts a source GNN to
the target graph via a series of sequentially generated graphs.

4 Theoretical Foundation

In this section, we present the theoretical foundation of graph GDA. The problem is formulated in Section 4.1.
We establish the error bound in Section 4.3 and derive the optimal path in Section 4.4.

4.1 Problem Setup

To formulate the graph GDA problem, we first define the path for graph GDA as follows.

4



Published in Transactions on Machine Learning Research (02/2026)

Definition 5 (Path). A path between the source graph G0 and target graph G1 is defined as H =
(H0, H1, ..., HT ), where H0 = G0 and HT = G1.

In general, for a T -stage graph GDA, given the model ft−1 at stage t − 1 and the successive graph Ht at
stage t, self-training paradigm trains the successive model ft based on the pseudo-labels ft−1(Ht). Formally,
graph GDA can be defined as follows.
Definition 6 (Graph gradual domain adaptation). Given a source graph G0 with label Y0, and a target
graph G1. Graph GDA (1) finds a path H with H0 = G0, HT = G1, and (2) gradually adapts the source model
to the target graph via self-training, that is:

ft := arg minft
ℓ (ft(Ht), ft−1(Ht)) , ∀t = 1, 2, ..., T,

where ℓ is the loss function and ft−1(Ht) is the pseudo-label for the t-th graph Ht given by the previous model
ft−1. Graph GDA aims to minimize the target error between the prediction fT (G1) and the groundtruth
label Y1.

Note that we consider a more general self-training paradigm compared to Empirical Risk Minimization
(ERM) Kumar et al. (2020) and do not pose specific constraints on the loss function ℓ. That is to say, our
proposed framework is compatible with various graph DA baselines with different adaptation losses.
Definition 7 (Graph convolution). For any graph G = (V, A, X), the graph convolution operation gcn for
any node u ∈ V depends only on node pair information NG(u) := {A(u, v), X(v)}v∈V , that is

gcn(G)u := gcn(NG(u)) := gcn({A(u, v), X(v)}v∈V), ∀u ∈ V.

A GNN layer g(i) is a composition of graph convolution gcn, linear transformation and ReLU activation

g(i) = ReLU ◦ Linear ◦ gcn(i). (2)

We further define node-level, edge-level and graph-level tasks as follows
Definition 8 (Node-level task). A GNN model is a composition of graph convolutions g(i), i.e., fn =
g(L) ◦ ... ◦ g(1). For each node u ∈ V, the node-level loss is defined by ϵn(fn(G)u), where the groundtruth
label Y (u) is omitted for brevity. The overall node-level loss of a GNN fn on a graph G can be defined as

ξn(fn, G) := 1
|V|

∑
u∈V

ϵn(fn(G)u).

Definition 9 (Edge-level task). A GNN model is a composition of graph convolutions g(i) and a pairwise
aggregation function ϕ, i.e., fe = ϕ◦g(L)◦...◦g(1) = ϕ◦fn. The aggregation function ϕ turns the embeddings of
two nodes fn(G)u, fn(G)u′ into an edge embedding fe(G)(u,u′) = ϕ(fn(G)u, fn(G)u′). For each edge (u, u′) ∈ G,
the edge-level loss is defined by ϵe

(
fe(G)(u,u′)

)
, where the groundtruth label Y ((u, u′)) is omitted for brevity.

The overall edge-level loss of a GNN fe on a graph G can be defined as

ξe(fe, G) = 1
|V|2

∑
u,u′∈V

ϵe

(
fe(G)(u,u′)

)
.

Definition 10 (Graph-level task). A GNN model is a composition of graph convolutions g(i) and a pooling
function r, i.e., fg = r ◦ g(L) ◦ ... ◦ g(1). The pooling function r turns the embeddings of all nodes fn(G) into
a graph embedding fg(G) = r(fn(G)). The overall graph-level loss of a GNN fg on a graph G can be defined
as ξg(fg, G), where the groundtruth label y(G) is omitted for brevity.

4.2 Assumptions

To capture the non-IID nature, i.e., node dependency, of graphs, we adopt the FGW distance Titouan et al.
(2019) in equation 1 as the domain discrepancy, measuring the graph distance in terms of both node attributes
X and node connectivity A. We make several assumptions following previous works on graph DA Zhu et al.
(2021); Bao et al. (2024) and GDA Kumar et al. (2020); Wang et al. (2022).
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Assumption 1 (General regularity assumptions). We make several regularity assumptions

A: (Lipschitz continuity of graph convolution). We assume there exists Cc > 0 such that for any nodes
u ∈ V0, v ∈ V1 we have

∥gcn(G0)u − gcn(G1)v∥X ≤ Cc · dW (NG0(u), NG1(v)) ,

where dq
W ({(A0(u, u′), X0(u′))}u′∈V0 , {(A1(v, v′), X1(v′))}v′∈V1)

= inf
τ∈Π(µ0,µ1)

E(u′,v′)∼τ [α|A0(u, u′) − A1(v, v′)|q + (1 − α)∥X0(u′) − X1(v′)∥q
X ] .

B: (Lipschitz continuity of linear layer). We assume there exists Clin > 0 such that for any weight matrices
W in linear layers Linear(x) = W x + b we have ∥W ∥ ≤ Clin.

Both assumptions ensure the generalization capability and stability of the GNN model. Specifically, As-
sumption Assumption A enforces smoothness with respect to graph topology: nodes with similar local
neighborhoods must yield similar embeddings. Assumption Assumption B requires model parameters to be
finite, a standard condition satisfied by regularization.
Assumption 2 (Task-specific regularity assumptions). We make the following regularity assumptions for
different graph learning tasks

C: (Lipschitz continuity of loss functions). We suppose there exists Cfn
> 0 for any node-level GNNs fni

,
Cfe

> 0 for any edge-level GNNs fei
, and Cfg

for any graph-level GNNs fgi
, such that

|ϵn(fn0(G)u) − ϵn(fn1(G)u)| ≤ Cfn · ∥fn0(NG(u)) − fn1(NG(u))∥Yn , (3)

|ϵe(fe0

(
G)(u,u′)

)
− ϵe

(
fe1(G)(u,u′)

)
| ≤ Cfe · ∥fe0(G)(u,u′) − fe1(G)(u,u′)∥Ye , (4)

|ξg(fg0 , G) − ξg(fg1 , G)| ≤ Cfg
· ∥fg0(G) − fg1(G)∥Yg

. (5)

D: (Hölder continuity of loss functions).
We suppose there exists CWn

> 0 for any nodes u ∈ V0, v ∈ V1; CWe
> 0 for any edges (u, u′) ∈

G0, (v, v′) ∈ G1; CWn
> 0 for any graphs G1, G2, and q > 1, such that

|ϵn(fn(G0)u) − ϵn(fn(G1)v)| ≤ CWn
· ∥fn(G0)u − fn(G1)v∥q

Yn
, (6)

|ϵe(fe

(
G0)(u,u′)

)
− ϵe

(
fe(G1)(v,v′)

)
| ≤ CWe

· ∥fe(G0)(u,u′) − fe(G1)(v,v′)∥q
Ye

, (7)
|ξg(fg, G0) − ξg(fg, G1)| ≤ CWg

· ∥fg(G0) − fg(G1)∥q
Yg

. (8)

E: (Lipschitz continuity of aggregation function). We suppose there exists Cϕ > 0 such that for any edges
(u, u′) ∈ G0, (v, v′) ∈ G1, we have

∥ϕ(fn(G0)u, fn(G0)u′)−ϕ(fn(G1)v, fn(G1)v′)∥Ye
≤ Cϕ ·(∥fn(G0)u−fn(G1)v∥X +∥fn(G0)u′ −fn(G1)v′∥X ).

(9)
F: (Lipschitz continuity of pooling function). We suppose there exists Cr > 0 such that for any graphs

G1, G2 and coupling π, we have

∥r (fn(G0)) − r (fn(G1)) ∥Yg
≤ Cr · E(u,v)∼π∥fn(G0)u − fn(G1)v∥X . (10)

Assumption C and Assumption D enforce the smoothness of the loss function with respect to model predictions.
Assumption C posits that similar predictions from different models result in similar losses. Assumption D
complements this by ensuring that for a fixed model, similar input embeddings lead to similar losses. These
conditions are mild and satisfied by standard surrogate losses (e.g., MSE, Cross-Entropy) on bounded domains.

Assumption E and Assumption F guarantee that readout operations preserve embedding proximity. As-
sumption Assumption E ensures edge-level aggregation remains stable under small perturbations in node
embeddings. Similarly, Assumption Assumption F requires the graph pooling function r to preserve local
smoothness, ensuring that graphs with aligned node embeddings map to similar graph-level representations.
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4.3 Error Bound

Under Assumption 1, we analyze the error bound of graph GDA. We first show that any L-layer GNN is
Hölder continuous w.r.t. the β-FGW distance, where β = α(1−(CcClin(1−α))L)

α+(1−α)L(CcClin)L−1(1−CcClin) .

Lemma 1 (Hölder continuity). For any L-layer node-level GNN fn = ⃝1
l=Lg(l), edge-level GNN fe =

ϕ ◦ ⃝1
l=Lg(l), and graph-level GNN fg = r ◦ ⃝1

l=Lg(l), where ⃝1
l=Lg(l) = g(L) ◦ · · · ◦ g(1) and g(i) are GNN

layers in equation 2. Given a source graph G0 and a target graph G1, we have:

|ξ(f, G0)) − ξ(f, G1)| ≤ C · dq
FGW;q,β(G0, G1),

where

β =
α
(
1 − (CcClin(1 − α))L

)
α + (1 − α)L(CcClin)L−1(1 − CcClin)

Cgnn = CcClin
α + (1 − α)(CcClin(1 − α))L−1 − (CcClin(1 − α))L

1 − CcClin(1 − α)

C =


CWnCgnn, for node-level tasks
2CWeCϕCgnn, for edge-level tasks
CWg CrCgnn, for graph-level tasks

The proof can be found in Appendix A. Intuitively, the upper bound of the performance gap between source
loss ξ(f, G0) and target loss ξ(f, G1) is proportional to the FGW distance between the source graph G0 and
target graph G1. Therefore, GNNs could suffer from significant performance degradation under large shifts.

To alleviate the effects of large shifts, we investigate the effectiveness of applying GDA on graphs, and derive
an error bound shown in Theorem 1.
Theorem 1 (Error bound). Let f0 denote the source model trained on the source graph H0 = G0. Suppose
there are T − 1 intermediate stages where in the t-th stage (for t = 1, 2, ..., T ), we adapt ft−1 to graph Ht to
obtain an adapted ft. If every adaptation step achieves ∥ft−1(Ht) − ft(Ht)∥Y ≤ δ on the corresponding graph
Ht, then the final error ξ(fT , HT ) on target graph HT = G1 is upper bounded by

ξ(fT , G1)≤ξ(f0, G0) + Cf · δT + C ·
T∑

t=1
dq

FGW;q,β(Ht−1, Ht).

where Cf = Cfn
for node-level task, Cf = Cfe

for edge-level tasks, and Cf = Cfg
for graph-level tasks.

The proof can be found in Appendix A. In general, the upper bound of the target GNN loss ξ(fT , G1) is
determined by three terms, including (1) source GNN loss ξ(f0, G0), (2) the accumulated training error Tδ,
and (3) the generalization error measured by length of the path

∑T
t=1 dq

FGW(Ht−1, Ht). In the following
subsection, we will analyze which path best benefits the graph GDA process.

4.4 Optimal Path

Motivated by Theorem 1, we derive the optimal path that minimizes the error bound in Theorem 2.
Theorem 2 (Optimal path). Given a source graph G0 and a target graph G1, let γ : [0, 1] → G/∼ be an FGW
geodesic connecting G0 and G1. Then the error bound in Theorem 1 attains its minimum when intermediate
graphs are Ht = γ( t

T ), ∀t = 0, 1, ..., T , where we have:

ξ(fT , G1) ≤ ξ(f0, G0) + Cf · δT +
C · dq

FGW;q,β(G0, G1)
T q−1 .

The proof can be found in Appendix A. In general, the key idea is to minimize the path length, whose
minimum is achieved by the FGW geodesic between source and target. As a remark, the optimal number T

7



Published in Transactions on Machine Learning Research (02/2026)

of intermediate steps can be obtained by

T ≈
(

(q − 1)C
Cf · δ

) 1
q

dFGW;q,β(G0, G1). (11)

Intuitively, the number of stages T balances the accumulated training error (the second term on the RHS)
and the generalization error (the third term on the RHS). Following Lemma 1, when CWn

, CWe
, CWg

are
small, model is robust to domain shifts and the error bound is dominated by the accumulated training error,
thus, we expect a smaller T for better performance. On the other hand, when CWn

, CWe
, CWg

are large,
model is vulnerable to domain shifts and the error bound is dominated by the generalization error, thus, we
expect a larger T to reduce domain shifts, hence achieving better performance.

5 Methodology

In this section, we present our proposed Gadget to perform graph GDA on the FGW geodesics. As
self-training is highly vulnerable to noisy pseudo labels, we first propose an entropy-based confidence to
denoise the noisy labels. Motivated by the theoretical foundation, we introduce a practical algorithm to
generate intermediate graphs, which as we prove, reside on the approximated FGW geodesic to best facilitate
the graph GDA process.

Motivated by Theorem 2, we generate the FGW geodesic as the optimal path for graph GDA. Previous
work Zeng et al. (2024c) generates graphs on the Gromov-Wasserstein geodesic purely based on graph
structure via mixup. We generalize such idea to the FGW geodesics to consider both graph structure and
node features.

Specifically, given source graph G0 = (V0, A0, X0), target graph G1 = (V1, A1, X1), and their probability
distributions µ0, µ1, two transformation matrices P0, P1 are employed to transform them into well-aligned
pairs G̃0 = (Ṽ0, Ã0, X̃0), G̃1 = (Ṽ1, Ã1, X̃1) with probability distributions µ̃0, µ̃1 as follows Zeng et al. (2024c)

Ã0 = P T
0 A0P0, X̃0 = P T

0 X0, µ̃0 = P T
0 µ0,

Ã1 = P T
1 A1P1, X̃1 = P T

1 X1, µ̃1 = P T
1 µ1,

where P0 = I|V0| ⊗ 11×|V1|, P1 = 11×|V0| ⊗ I|V1|.

(12)

Afterwards, the intermediate graphs Ht are the interpolations of the well-aligned pairs, that is

Ht :=
(

V0 ⊗ V1,

(
1− t

T

)
Ã0+ t

T
Ã1,

(
1− t

T

)
X̃0+ t

T
X̃1

)
. (13)

With the above transformations, we prove that the intermediate graphs generated by equation 13 are on the
FGW geodesics in the following theorem.
Theorem 3 (FGW geodesic). Given a source graph G0 and a target graph G1, the transformed graphs G̃0, G̃1
are in the FGW equivalent class of G0, G1, i.e., JG0K = JG̃0K, JG1K = JG̃1K. Besides that, the intermediate
graphs Ht, ∀t = 0, 1, ..., T , generated by equation 13 are on an FGW geodesic connecting G0 and G1.

According to Theorems 2 and 3, directly applying the generated Ht best benefits the graph GDA process.

However, practically, the transformations in equation 12 involve computation in the product space, posing
great challenges to the scalability to large-scale graphs. For faster computation, we employ an efficient
low-rank OT algorithm adapted from Zeng et al. (2024c) to generate intermediate graphs on the FGW
geodesics. Specifically, via a change of variable Q0 = P0diag(g), Q1 = P1diag(g), the transformation matrices
P0, P1 can be obtained by solving the following low-rank OT problem

arg minQ0,Q1,g(εG0,G1(QT
0diag(1/g)Q1)) 1

2 ,

s.t. Q0 ∈ Π(µ1, g), Q1 ∈ Π(µ2, g), g ∈ ∆r,
(14)

where r is the rank of the low-rank OT problem. When r = |V1||V2|, the optimal solution to equation 14
provides the optimal transformation matrices P0, P1. By reducing the rank of g from |V1||V2| to a smaller
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rank r, the low-rank OT problem can be efficiently solved via a mirror descent scheme by iteratively solving
the following problem Scetbon et al. (2022); Zeng et al. (2024c):(

Q
(t+1)
0 , Q

(t+1)
1 , g(t+1)

)
=arg min

Q0,Q1,g
KL
(

(Q1, Q2, g), (K(t)
1 , K

(t)
2 , K

(t)
3 )
)

,

s.t. Q0 ∈ Π(µ0, g), Q1 ∈ Π(µ1, g), g ∈ ∆r,

where



K
(t)
1 =exp

(
γB(t)Q

(t)
1 diag(1/g(t))

)
⊙ Q

(t)
0 ,

K
(t)
2 =exp

(
γB(t)T

Q
(t)
0 diag(1/g(t))

)
⊙ Q

(t)T

1 ,

K
(t)
3 =exp

(
−γdiag

(
Q

(t)T

0 B(t)Q
(t)
1

)
/g(t)2

)
⊙ g(t),

B(t) =−αM +4(1 − α)A0Q
(t)
0 diag(1/g(t))Q(t)T

1 A1.

Remark. Our path generation algorithm is adapted from Zeng et al. (2024c) but bears subtle difference. First
(space), the Gromov-Wasserstein (GW) space in Zeng et al. (2024c) only captures graph structure information,
but the FGW space considers both node attributes and graph structure information. Secondly (task), Zeng
et al. (2024c) utilizes the GW geodesics to mixup graphs and their labels for graph-level classification, while
Gadget utilizes the FGW geodesic to generate label-free graphs for node-level classification. Thirdly (label),
Zeng et al. (2024c) utilizes the linear interpolation of graph labels as the pseudo-labels for mixup graphs,
requiring information from both ends of the geodesic which is inapplicable for graph GDA, while Gadget
utilizes self-training to label the intermediate graphs, relying solely on source information.

Self-training paradigm. Self-training is a predominant paradigm for GDA Kumar et al. (2020); Wang
et al. (2022), but is known to be vulnerable to noisy pseudo labels Chen et al. (2022a). Such vulnerability
may be further exacerbated for GNN models as the noise can propagate Wang et al. (2024); Liu et al. (2022).
To alleviate this issue, we utilize an entropy-based confidence to depict the reliability of the pseduo-labels.
Given a model output ŷi ∈ RC , where C is the number of classes, the confidence score conf(ŷi) is calculated
by

conf(ŷi) := maxj ent(ŷj) − ent(ŷi)
maxj ent(ŷj) − minj ent(ŷj) , (15)

where ent(·) calculates the entropy of the model prediction. Intuitively, for reliable model outputs, we expect
low entropy values and a high confidence scores, and vice versa.

Error bound under approximation. Note that the error bound in Theorem 1 applies for the ideal case
where intermediate graphs Ht are on the exact FGW geodesics. The practical algorithm adopts low-rank
formulation which may introduce approximation error. We provide the following theorem to quantify the
effect of low-rank approximation errors in practical algorithm.
Theorem 4 (Practical error bound). For a sequence of intermediate graphs H̃0, . . . , H̃T on the approximated
FGW geodesics generated by Gadget, performing GDA along the path yield a final error ξ(fT , HT ) on target
graph HT = G1 upper bounded by

ξ(fT , G1) ≤ Original bound + 4Cδapprox

T∑
t=1

dFGW(Ht, Ht+1) + 4CTδ2
approx

where original bound is the upper bound on the exact geodesics provided in Theorem 1, and δapprox =
maxt dFGW(Ht, H̃t) is the maximum approximation error between exact geodesic graph Ht and low-rank
approximated graph H̃t.

The proof of Theorem 4 is provided in Appendix A. As detailed in the Appendix, when rank r → |V1||V2|,
i.e., full rank, the approximation error δapprox → 0, yielding the original upper bound in Theorem 1.

9



Published in Transactions on Machine Learning Research (02/2026)

6 Experiments

We conduct extensive experiments to evaluate the proposed Gadget. We first introduce experiment setup
in Section 6.1. Then, we provide the visualization of graph GDA to assess the necessity of incorporating
GDA for graphs in Section 6.3. Afterwards, we evaluate Gadget’s effectiveness on benchmark datasets in
Section 6.2. We further conduct extensive studies on the varying shift levels (Section 6.4), hyperparameter
sensitivity (Section 6.5), and path quality (Section 6.6).

6.1 Experimental Setup

We conduct extensive experiments on node classification using both synthetic and real-world datasets,
including Airport Ribeiro et al. (2017), Citation Tang et al. (2008), Social Li et al. (2015), and contextual
stochastic block model (CSBM) Deshpande et al. (2018). Airport dataset contains flight information of
airports from Brazil, USA and Europe. Citation dataset includes academic networks from ACM and DBLP.
Social dataset includes two blog networks from BlogCatalog (Blog1) Flickr (Blog2). We also adopt the CSBM
model to generate various graph shifts, including attribute shifts with positively (Right) and negatively (Left)
shifted attributes, degree shift with High and Low average degrees, and homophily shifts with high (Homo)
and low (Hetero) homophilic scores in the source and target graphs. More details are in Appendix D.

We adopt two prominent GNN models, including GCN Kipf & Welling (2017) and APPNP Gasteiger et al.
(2018), as the backbone classifier. Different adaptation baselines can be utilized to adapt knowledge from
one graph to its consecutive graph along the path. Baseline adaptation methods include Empirical Risk
Minimization (ERM), MMD Gretton et al. (2012), CORAL Sun et al. (2016), AdaGCN Dai et al. (2022),
GRADE Wu et al. (2023) and StruRW Liu et al. (2023a).

During training, we have full access to source labels while having no knowledge on target la-
bels. Results are averaged over five runs to avoid randomness. Our code is available at
https://github.com/zhichenz98/Gadget-TMLR. More details are provided in Appendix D.

6.2 Effectiveness Results

To evaluate the effectiveness of Gadget in handling large shifts, we carry out experiment on both real-world
and synthetic datasets, and the results are shown in Figure 2. In general, compared to direct adaptation
(colored bars w/o hatches), we observe consistent improvements on the performance of a variety of graph DA
methods and backbone GNNs on different datasets when applying Gadget (hatched bars). Specifically, on
real-world datasets, Gadget achieves an average improvement of 6.77% on Airport, 3.58% on Social and
3.43% on Citation, compared to direct adaptation. On synthetic CSBM datasets, Gadget achieves more
significant performance, improving various graph DA methods by 36.51% in average. More result statistics
are provided in Appendix C.1.

Besides, we note a small number of cases where direct adaptation performs better than Gadget. According
to Theorem 1, the target error depends on the source performance, the accumulated training error, and the
generalization error. When the shift is mild, the accumulated training error dominates the error bound, so
direct adaptation (T = 1) is preferable. For extremely large shifts, bridging the gap would require many steps,
and the resulting linear growth of accumulated training error can outweigh the reduction of the generalization
term. Therefore, it is essential to choose an appropriate T that achieves a good balance between accumulated
training error and generalization error.

6.3 Understanding the Gradual Adaptation Process
To better understand the necessity and mechanism of graph GDA, we first visualize the embedding spaces of
the CSBM and Citation datasets trained under ERM. The results are shown in Figure 3, where different
colors indicate different classes and different markers represent different domains.

Firstly, it is shown that large shifts exist in both datasets, as the source (•) and target samples (×) are
scarcely overlapped. Besides that, direct adaptation often fails when facing large shifts. As shown in Figure 3,
for the CSBM dataset, though the well-trained source model correctly classifies all source samples (•,•), all
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(a) csbm

(b) airport

(c) social (d) citation

Figure 2: Experiment results. Different colors indicate different baseline adaptation methods. Bars with
and without hatches indicate direct adaptation and gradual adaptation with Gadget, respectively. Our
proposed Gadget consistently achieves better performance than direct adaptation on different backbone
GNNs, adaptation methods and datasets. Best viewed in color.

Figure 3: Embedding space of CSBM dataset under homophily shifts. Direct adaptation (left) fails when facing
large shifts. GDA (right) correctly classifies most samples in each step, resulting in significant improvement
in the classification accuracy. Best viewed in color.

target samples from class 0 (×) are misclassified as class 1 (×), due to the large shifts between the source
and the target. In contrast, when adopting graph GDA, we expect smaller shifts between two successive
domains, as source (•) and target (×) samples are largely overlapped, and the trained classifier correctly
classifies most of the target samples.

The embedding space visualization provides further insights in the causes for performance degradation under
large shifts, including representation degradation and classifier degradation. For representation degradation,
we observe that although source samples are well separated, target samples are mixed together, indicating
that source embedding transformation is suboptimal for the shifted target. For classifier degradation, while
the classification boundary works well for source samples, it fails to classify target samples. However, when
adopting Gadget, not only the target samples are well-separated, alleviating representation degradation, but
also the classification boundary correctly classifies source and target samples, alleviating classifier degradation.
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6.4 Mitigating Domain Shifts

Figure 4: Classification accuracy under different shift levels.

To better understand how Gadget mit-
igates domain shifts, we test the GNN
performance under various shift levels be-
tween source Gs and target Gt. Specifi-
cally, we vary (1) the attribute shift level
measured by ∆µ = |avg(Xs) − avg(Xt)|,
(2) the homophily shift level measured by
∆h = |hs − ht|, and (3) the degree shift
level measured by ∆d = |ds − dt|. And
the results are shown in Figure 4.

As shown in the results, when the shift level increases, the performance of direct adaptation (ERM) drops
rapidly, while the performance of gradual GDA (Gadget) is more robust. Compared to the performance
under the mildest shift (left), ERM degrades up to 41.5% under the largest shift (right), behaving like random
guessing as the classification accuracy approaches 0.5 on a binary classification task. However, Gadget only
degrades up to 30.3% on the largest shift compared to performance under the mildest shift and outperforms
ERM by up to 26.7% on the largest shift.

In addition, it is worth noting that Gadget underperforms direct adaptation when there domain shift
does not exist. This is because the gradual GDA process involves self-training, which may introduce noisy
pseudo-labels that mislead the training process. As we reveal in Theorem 2, the error bound includes an
accumulated error Tδ. When domain shift is mild, i.e., dFGW(G0, G1) is small, the effects of the accumulated
error could be significant. And under such circumstances, as shown in Eq. equation 11, the optimal number
of intermediate steps T should be zero, i.e., direct adaptation.

6.5 Hyperparameter Study

We study how hyperparameters affect the performance and run time, including studies on the number T of
intermediate steps and the rank r of low-rank OT. We experiment on the CSBM datasets with 500 nodes.

For the number of intermediate steps T , the results are shown in Figure 5(a). Overall, as T increases,
the performance first increases and then decreases, achieving the overall best performance when T = 3.
This phenomenon aligns with our error bound in Theorem 2. When T is smaller than the optimal T in
Eq. equation 11, the shifts between two successive graphs is large and the generalization error CW·dq

FGW(G0,G1)
T q−1

dominates the performance; Hence, the performance first improves. However, when T is larger than the
optimal T in Eq. equation 11, the accumulated training error Tδ dominates the performance; Hence, the
performance degrades. Besides, we observe that the textittraining time increases almost linearly w.r.t. T ,
as the gradual domain adaptation process involves repeated training the model for T times. Based on the
above observation, we choose T = 3 for the benchmark experiments as it achieves good trade-off between
performance and efficiency.

For the choice of rank r, the results are in Figure 5(b). Overall, as r increases, the performance first increases
and then fluctuates at a high level. When r is small, the transformation in Eq. equation 12 projects source and
target graphs to small graphs, causing information loss during the transformation; Hence, the performance
degrades. However, when r is large enough, the transformation preserves most information in the source and
target graphs; Hence achieving relatively stable performance. Besides, we observe that the generation time
increases almost linear w.r.t. r, which aligns with our complexity analysis of O(Lndr + Ln2r).

Figure 6: Study on α.

Besides, we study the effect of α on balancing the importance of node features
and graph structure. We report the average performance on the Airport dataset in
Figure 6. Overall, Gadget is relative robust to different selections with α ∈ (0, 1),
under which the FGW distance consider both node features and graph structure.
However, when α = 0, i.e., Wasserstein distance considering features only, or α = 1,
i.e., GW distance considering structure only, we observe a performance degradation.
This validates that both features and structure are crucial for the construction of the
optimal path.
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(a) Study on the number of intermediate steps T . (b) Study on the rank r.

Figure 5: Hyperparameter Study.

6.6 Path quality Analysis

Figure 7: Path quality.

As Theorem 2 suggests, we expect the intermediate graphs lie on the FGW geodesics
connecting source and target graphs. Following Definition 3, given any two values
λ0, λ1 ∈ [0, 1], the FGW distance between the generated graphs is expected to be
proportional to the difference between the two values. We evaluate such correlation
on the Citation dataset with results shown in Figure 7.

The results suggests that dFGW(γ(λ0), γ(λ1))/dFGW(G0, G1) is strongly correlated
with |λ0 − λ1|, with a Pearson correlation score of nearly 1. This validates that
the generated graphs indeed lie along the FGW geodesics, thereby ensuring the
effectiveness of graph GDA.

7 Conclusions

In this paper, we tackle large shifts on graphs, and propose Gadget, the first
graph gradual domain adaptation framework to gradually adapt from source to target graph along the FGW
geodesics. We establish a theoretical foundation by deriving an error bound for graph GDA based on the
FGW discrepancy, motivated by which, we reveal that the optimal path minimizing the error bound lies on
the FGW geodesics. A practical algorithm is further proposed to generate graphs on the FGW geodesics,
complemented by entropy-based confidence for pseudo-label denoising, which enhances the self-training
paradigm for graph GDA. Extensive experiments demonstrate the effectiveness of Gadget, enhancing various
graph DA methods on different real-world datasets significantly.
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A Proof

In this section, we provide detailed proof for all the Lemmas and Theorems. We first prove the Hölder
continuity in Section A.1 (Lemma 1), then we prove the error bounds for node-level, edge-level and graph-level
tasks in Section A.2 (Theorem 1). Finally, we prove the optimality of the FGW geodesic for graph GDA in
Section A.3 (Theorems 2 and 3).

A.1 Proof for Hölder Continuity

Lemma 1 (Hölder continuity). For any L-layer node-level GNN fn = ⃝1
l=Lg(l), edge-level GNN fe =

ϕ ◦ ⃝1
l=Lg(l), and graph-level GNN fg = r ◦ ⃝1

l=Lg(l), where ⃝1
l=Lg(l) = g(L) ◦ · · · ◦ g(1) and g(i) are GNN

layers in equation 2. Given a source graph G0 and a target graph G1, we have:

|ξ(f, G0)) − ξ(f, G1)| ≤ C · dq
FGW;q,β(G0, G1),

where

β =
α
(
1 − (CcClin(1 − α))L

)
α + (1 − α)L(CcClin)L−1(1 − CcClin)

Cgnn = CcClin
α + (1 − α)(CcClin(1 − α))L−1 − (CcClin(1 − α))L

1 − CcClin(1 − α)

C =


CWn

Cgnn, for node-level tasks
2CWe

CϕCgnn, for edge-level tasks
CWg

CrCgnn, for graph-level tasks

Proof. We start with the node-level tasks based on Assumptions 1 and 2. Given two graphs G0 =
(V0, A0, X0), G1 = (V1, A1, X1). We denote the l-th layer embedding as X(l) = f (l) ◦ · · · ◦ f (1)(G), with
corresponding graph G(l) = (V, A, X(l)). Let the marginal constraints be µ0 = Unif(|V0|), µ1 = Unif(|V1|),
for any coupling π ∈ Π(µ0, µ1), we have

|ξ(f, G0) − ξ(f, G1)|

=
∣∣∣∣∣ 1
|V0|

∑
u∈V0

ϵ(f, {A0(u, u′), X0(u′)}u′∈V0) − 1
|V1|

∑
v∈V1

ϵ(f, {A1(v, v′), X1(v′)}v′∈V1)
∣∣∣∣∣

=
∣∣∣∣∣∑
u∈V0

µ0(u)ϵ(f, {A0(u, u′), X0(u′)}u′∈V0) −
∑

v∈V1

µ1(v)ϵ(f, {A1(v, v′), X1(v′)}v′∈V1)
∣∣∣∣∣

=
∣∣E(u,v)∼π (ϵ(f, {A0(u, u′), X0(u′)}u′∈V0) − ϵ(f, {A1(v, v′), X1(v′)}v′∈V1))

∣∣
≤E(u,v)∼π |ϵ(f, {A0(u, u′), X0(u′)}u′∈V0) − ϵ(f, {A1(v, v′), X1(v′)}v′∈V1)|
≤E(u,v)∼πCWn

∥f(G0)u − f(G1)v∥q
Yn

(equation 6)

(16)

Now consider the l-th layer GNN f (l) = ReLU ◦ Linear ◦ g(l), with input graph G(l−1). For ReLU activation,
given two inputs X0, X1, it is easy to show that

∥ReLU(X0) − ReLU(X1)∥X ≤ ∥X0 − X1∥X (17)

For linear layer Linear(x) = W x + b, given two inputs X0, X1, we can show that

∥Linear(X0) − Linear(X1)∥X ≤ ∥W ∥∥X0 − X1∥X

≤ Clin∥X0 − X1∥X (Assumption B)
(18)
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Combining equation 17 and equation 18, for any coupling π ∈ Π(µ0, µ1), we have

∥f (l)(G(l−1)
0 )u − f (l)(G(l−1)

1 )v∥q
X

=∥ReLU ◦ Linear ◦ g(l)(Gl−1) − ReLU ◦ Linear ◦ g(l)(Gl−1)∥q
X

≤Clin∥g(l)(G(l−1)
0 )u − g(l)(G(l−1)

1 )v∥q
X

≤CcClindq
W

(
NG(l−1)

0
(u), NG(l−1)

1
(v)
)

(Assumption A)

=CcClin inf
τ∈Π(µ0,µ1)

E(u′,v′)∼τ

[
α|A0(u, u′) − A1(v, v′)|q + (1 − α)∥X

(l−1)
0 (u′) − X

(l−1)
1 (v′)∥q

X

]
≤CcClinE(u′,v′)∼π

[
α|A0(u, u′) − A1(v, v′)|q + (1 − α)∥X

(l−1)
0 (u′) − X

(l−1)
1 (v′)∥q

X

]
=CcClin

(
αE(u′,v′)∼π|A0(u, u′) − A1(v, v′)|q + (1 − α)∥f (l−1)(G(l−2)

0 )u − f (l−1)(G(l−2)
1 )v∥q

X

)

(19)

By repeatedly applying equation 19 to equation 16, we have:

|ξ(f, G0) − ξ(f, G1)|
≤ E(u,v)∼πCWn ∥f(G0)u − f(G1)v∥q

Yn

= E(u,v)∼πCWn ∥f (L)(G(L−1)
0 )u − f (L)(G1)(L−1)

v ∥q
Yn

≤ CWn CcClin

(
αE (u,v)∼π

(u′,v′)∼π

|A0(u, u′) − A1(v, v′)|q + (1 − α)E(u,v)∼π∥f (L−1)(G(L−2)
0 )u − f (L−1)(G(L−2)

1 )v∥q
X

)
(equation 19)

≤ CWn CcClin

(
α

L−1∑
l=0

[CcClin(1 − α)]lE (u,v)∼π

(u′,v′)∼π

|A0(u, u′) − A1(v, v′)|q + (CcClin)L−1(1 − α)LE(u,v)∼π∥X0(u) − X1(v)∥q
X

)

= Cn

(
βE (u,v)∼π

(u′,v′)∼π

|A0(u, u′) − A1(v, v′)|q + (1 − β)E(u,v)∼π∥X0(u) − X1(v)∥q
X

)
≤ Cn inf

π∈Π(µ0,µ1)

(
βE (u,v)∼π

(u′,v′)∼π

|A0(u, u′) − A1(v, v′)|q + (1 − β)E(u,v)∼π∥X0(u) − X1(v)∥q
X

)
= Cndq

FGW;q,β(G(L)
0 , G(L)

1 )
(20)

where β, Cn are defined as


β =

α
(
1 − (CcClin(1 − α))L

)
α + (1 − α)(CcClin(1 − α))L−1 − (CcClin(1 − α))L

Cn = CWn
CcClin

α + (1 − α)(CcClin(1 − α))L−1 − (CcClin(1 − α))L

1 − CcClin(1 − α)

To this point, we prove the node-level loss ξn is Hölder continuous w.r.t. the β-FGW distance.
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We can derive a similar proof for edge-level tasks. Let the marginal constraints be µ0 = Unif(|V0|), µ1 =
Unif(|V1|), for any coupling π ∈ Π(µ0, µ1), we have

|ξe(fe, G0) − ξe(fe, G1)|

=

∣∣∣∣∣∣ 1
|V0|2

∑
u,u′∈V0

ϵe

(
fe(G0)(u,u′)

)
− 1

|V1|2
∑

v,v′∈V1

ϵe

(
fe(G1)(v,v′)

)∣∣∣∣∣∣
=|Eu,u′∼µ0ϵe

(
fe(G0)(u,u′)

)
− Ev,v′∼µ1ϵe

(
fe(G1)(v,v′))

)
|

≤E(u,v),(u′,v′)∼π|ϵe

(
fe(G0)(u,u′)

)
− ϵe

(
fe(G1)(v,v′))

)
|

≤CWe · E(u,v),(u′,v′)∼π∥fe(G0)(u,u′) − fe(G1)(v,v′)∥q
Ye

(equation 7)
=CWe · E(u,v),(u′,v′)∼π∥ϕ(fn(G0)u, fn(G0)u′) − ϕ(fn(G1)v, fn(G1)v′)∥q

Ye

≤CWe
Cϕ · E(u,v),(u′,v′)∼π(∥fn(G0)u − fn(G1)v∥q

X + ∥fn(G0)u′ − fn(G1)v′∥q
X ) (Assumption E)

=CWe
Cϕ · E(u,v),(u′,v′)∼π(∥g(L)(G(L−1)

0 )u − g(L)(G(L−1)
1 )v∥q

X + ∥g(L)(G(L−1)
0 )u′ − g(L)(G(L−1)

1 )v′∥q
X )

=2CWe
Cϕ · E(u,v)∼π∥g(L)(G(L−1)

0 )u − g(L)(G(L−1)
1 )v∥q

X

Similar to Lemma 1, we can leverage equation 19 and equation 20 to derive the following inequality

|ξe(fe, G0) − ξe(fe, G1)|

=2CWe
Cϕ · E(u,v)∼π∥g(L)(G(L−1)

0 )u − g(L)(G(L−1)
1 )v∥q

X

≤2CWeCϕCcClin · dq
W

(
NG(L−1)

0
(u), NG(L−1)

1
(v)
)

(Assumption A)

≤Ce

(
βE (u,v)∼π

(u′,v′)∼π

|A0(u, u′) − A1(v, v′)|q + (1 − β)E(u,v)∼π∥X0(u) − X1(v)∥q
X

)
≤Ce inf

π∈Π(µ0,µ1)

(
βE (u,v)∼π

(u′,v′)∼π

|A0(u, u′) − A1(v, v′)|q + (1 − β)E(u,v)∼π∥X0(u) − X1(v)∥q
X

)
=Cedq

FGW;q,

(
G(L)

0 , G(L)
1

)

where β, Ce are defined as


β =

α
(
1 − (CcClin(1 − α))L

)
α + (1 − α)(CcClin(1 − α))L−1 − (CcClin(1 − α))L

Ce = 2CWe
CϕCcClin

α + (1 − α)(CcClin(1 − α))L−1 − (CcClin(1 − α))L

1 − CcClin(1 − α)

To this point, we prove the edge-level loss ξe is Hölder continuous w.r.t. the β-FGW distance.

Finally, we prove for graph-level tasks

|ξg(fg, G0) − ξg(fg, G1)| ≤ CWg · ∥fg(G0) − fg(G1)∥q
Y .
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Similar to the proof for Lemma 1, we can leverage equation 19 to derive the following inequality

|ξg(fg, G0) − ξg(fg, G1)| ≤ CWg
· ∥fg(G0) − fg(G1)∥q

Yg

= CWg
∥r ◦ f(G0) − r ◦ f(G1)∥X

≤ CWg
Cr · E(u,v)∼π∥f(G0)u − f(G1)v∥X (Assumption F)

= CWg
Cr · E(u,v)∼π∥f (L)(G(L−1)

0 )u − f (L)(G(L−1)
1 )v∥X

≤ CWg
CrCcClindq

W

(
NG(L−1)

0
(u), NG(L−1)

1
(v)
)

(Assumption A)

≤ Cg

(
βE (u,v)∼π

(u′,v′)∼π

|A0(u, u′) − A1(v, v′)|q + (1 − β)E(u,v)∼π∥X0(u) − X1(v)∥q
X

)
≤ Cg inf

π∈Π(µ0,µ1)

(
βE (u,v)∼π

(u′,v′)∼π

|A0(u, u′) − A1(v, v′)|q + (1 − β)E(u,v)∼π∥X0(u) − X1(v)∥q
X

)
= Cgdq

FGW;q,β(G(L)
0 , G(L)

1 )

where β, Cg are defined as
β =

α
(
1 − (CcClin(1 − α))L

)
α + (1 − α)(CcClin(1 − α))L−1 − (CcClin(1 − α))L

Cg = CWg
CrCcClin

α + (1 − α)(CcClin(1 − α))L−1 − (CcClin(1 − α))L

1 − CcClin(1 − α)

To this point, we prove the graph-level loss ξg is Hölder continuous w.r.t. the β-FGW distance.

A.2 Proof for Error Bound

Theorem 1 (Error bound). Let f0 denote the source model trained on the source graph H0 = G0. Suppose
there are T − 1 intermediate stages where in the t-th stage (for t = 1, 2, ..., T ), we adapt ft−1 to graph Ht to
obtain an adapted ft. If every adaptation step achieves ∥ft−1(Ht) − ft(Ht)∥Y ≤ δ on the corresponding graph
Ht, then the final error ξ(fT , HT ) on target graph HT = G1 is upper bounded by

ξ(fT , G1)≤ξ(f0, G0) + Cf · δT + C ·
T∑

t=1
dq

FGW;q,β(Ht−1, Ht).

where Cf = Cfn
for node-level task, Cf = Cfe

for edge-level tasks, and Cf = Cfg
for graph-level tasks.

Proof. For any intermediate stage t = 1, 2, ..., T , we first consider node-level loss ξn:∣∣ξn(fnt−1 , Ht) − ξn(fnt
, Ht)

∣∣
=
∣∣∣∣∣ 1
|Vt|

∑
u∈Vt

ϵn(fnt−1 , NHt(u)) − 1
|Vt|

∑
u∈Vt

ϵn(fnt , NHt(u))
∣∣∣∣∣

≤ 1
|Vt|

∑
u∈Vt

∣∣ϵn(fnt−1 , NHt
(u)) − ϵn(fnt

, NHt
(u))

∣∣
≤ 1

|Vt|
∑

u∈Vt

Cfn ·
∥∥fnt−1(NHt(u)) − fnt(NHt(u))

∥∥
Yn

(Assumption C)

= Cfn
· 1

|Vt|
∑

u∈Vt

∥∥fnt−1(Ht)u − fnt
(Ht)u

∥∥
Yn

= Cfn ·
∥∥fnt−1(Ht) − fnt(Ht)

∥∥
Yn

≤ Cfn · δ

(21)
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Similarly, for edge-level loss ξe, we have:∣∣ξe(fet−1 , Ht) − ξe(fet
, Ht)

∣∣
=

∣∣∣∣∣∣ 1
|Vt|2

∑
u,u′∈Vt

ϵe(fet−1(Ht)(u,u′)) − 1
|Vt|2

∑
u∈Vt

ϵe(fet
(Ht)(u,u′))

∣∣∣∣∣∣
≤ 1

|Vt|2
∑

u,u′∈Vt

∣∣∣∣∣ϵe(fet−1(Ht)(u,u′)) −
∑

u∈Vt

ϵe(fet
(Ht)(u,u′))

∣∣∣∣∣
≤ 1

|Vt|2
∑

u∈Vt

Cfe ·
∥∥fet−1(Ht)(u,u′) − fet(Ht)(u,u′)

∥∥
Ye

(Assumption C)

= Cfe
· 1

|Vt|2
∑

u∈Vt

∥∥fet−1(Ht)(u,u′) − fet
(Ht)(u,u′)

∥∥
Ye

= Cfe ·
∥∥fet−1(Ht) − fet(Ht)

∥∥
Ye

≤ Cfe · δ

(22)

Similarly, for graph-level loss ξg, we have:∣∣ξg(fgt−1 , Ht) − ξg(fet , Ht)
∣∣

≤ Cfg ·
∥∥fet−1(Ht) − fet(Ht)

∥∥
Yg

(Assumption C)

≤ Cfg
· δ

(23)

For simplicity, we slightly abuse Cf as a general notation for Cfn , Cfe , Cfg , and abuse f as a general notation
for fn, fe, fg. Therefore, equation 21, equation 22, and equation 23 can be uniformly written as

|ξ(ft−1, Ht) − ξ(ft, Ht)| ≤ Cf · δ (24)

Based on equation 24 and Lemma 1, we have

|ξ(ft−1, Ht−1) − ξ(ft, Ht)|
≤ |ξ(ft−1, Ht−1) − ξ(ft, Ht−1)| + |ξ(ft, Ht−1) − ξ(ft, Ht)|
≤ Cf · δ + C · dq

FGW;q,β(Ht−1, Ht)

Therefore, we have:

ξ(fT , G1) = ξ(fT , HT )
= ξ(f0, H0) + |ξ(fT , HT ) − ξ(f0, H0)|

= ξ(f0, H0) +
∣∣∣∣∣

T∑
t=1

(ξ(ft−1, Ht) − ξ(ft, Ht))
∣∣∣∣∣

≤ ξ(f0, H0) +
T∑

t=1
|ξ(ft−1, Ht) − ξ(ft, Ht)|

≤ ξ(f0, H0) +
T∑

t=1

(
Cf · δ + C · dq

FGW;q,β(Ht−1, Ht)
)

= ξ(f0, H0) + Cf · δT + C
T∑

t=1
dq

FGW;q,β(Ht−1, Ht)

= ξ(f0, G0) + Cf · δT + C

T∑
t=1

dq
FGW;q,β(Ht−1, Ht)
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A.3 Proof for Optimal Path

Theorem 2 (Optimal path). Given a source graph G0 and a target graph G1, let γ : [0, 1] → G/∼ be an FGW
geodesic connecting G0 and G1. Then the error bound in Theorem 1 attains its minimum when intermediate
graphs are Ht = γ( t

T ), ∀t = 0, 1, ..., T , where we have:

ξ(fT , G1) ≤ ξ(f0, G0) + Cf · δT +
C · dq

FGW;q,β(G0, G1)
T q−1 .

Proof. Note that for any intermediate graphs H1, ..., HT −1, by Jensen’s inequality of the convex function
z → |z|q and the triangle inequality of dFGW, we have:

T∑
t=1

dq
FGW;q,β(Ht−1, Ht) = T

T∑
t=1

dq
FGW;q,β(Ht−1, Ht)

T

≥ T

T∑
t=1

(
dFGW;q,β(Ht−1, Ht)

T

)q

=
∑T

t=1 dq
FGW;q,β(Ht−1, Ht)

T q−1

≥
dq

FGW;q,β(Ht−1, Ht)
T q−1

When the intermediate graphs Ht, ∀t = 1, 2, ..., T are on the FGW geodesics, i.e., Ht = γ
(

t
T

)
, by the geodesic

property in Definition 3, we have

dFGW;q,β(Ht−1, Ht) = dFGW;q,β

(
γ

(
t − 1

T

)
, γ

(
t

T

))
=
∣∣∣∣ t − 1

T
− t

T

∣∣∣∣ · dFGW;q,β(γ(0), γ(1))

= 1
T

· dFGW;q,β(G0, G1)

Therefore, we have

ξ(fT , G1) ≤ ξ(f0, G0) + Cfn · δT + C

T∑
t=1

dq
FGW;q,β(Ht−1, Ht)

= ξ(f0, G0) + Cfn
· δT + C

T∑
t=1

(
1
T

dFGW;q,β(G0, G1)
)q

= ξ(f0, G0) + Cfn · δT +
C · dq

FGW;q,β(G0, G1)
T q−1

which realize the lower bound. Therefore, the geodesic γ gives the optimal path for graph GDA.

Theorem 3 (FGW geodesic). Given a source graph G0 and a target graph G1, the transformed graphs G̃0, G̃1
are in the FGW equivalent class of G0, G1, i.e., JG0K = JG̃0K, JG1K = JG̃1K. Besides that, the intermediate
graphs Ht, ∀t = 0, 1, ..., T , generated by equation 13 are on an FGW geodesic connecting G0 and G1.

Proof. Given a source graph G0 = (V0, A0, X0) and a target graph G1 = (V1, A1, X1), as well as their
probability measures µ1, µ2, we obtain the optimal FGW matching S based on equation 1.

We first show that the transformed graphs G̃0, G̃1 from equation 12 are in the FGW equivalent classes of
G0, G1, respectively. The transformed graphs are on the product space of G0 and G1, and we can write out
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the FGW distance between G0 and G̃0 as follows

dFGW(G0, G̃0)
= min

S∈Π(µ1,µ̃1)
(1 − α)E(u,(x,y))∼SM(u, (x, y))q + αE (u,(x,y))∼S

(u′,(x′,y′))∼S

|A0(u, u′) − Ã0((x, y), (x′, y′))|q

Consider a the following naive coupling satisfying the marginal constraint S ∈ Π(µ0, µ̃0)

S(u, (x, y)) =


µ0(u)
|V1|

, if u = x

0, else
, (25)

the FGW distance dFGW(G0, G̃0) with optimal coupling S∗ is upper bounded by εG0,G̃0
(S0) as follows

dq
FGW(G0, G̃0)
= (1 − α)E(u,(x,y))∼S∗ M(u, (x, y)) + αE (u,(x,y))∼S∗

(u′,(x′,y′))∼S∗
|A0(u, u′) − Ã0((x, y), (x′, y′))|q

= (1−α)E(u,(x,y))∼S∗

∣∣∣∣∣X(u)−
∑
i∈V0

P0(i,(x, y))X(i)

∣∣∣∣∣
q

+ αE (u,(x,y))∼S∗
(u′,(x′,y′))∼S∗

∣∣∣∣∣∣∣A0(u, u′)−
∑
i∈V0
j∈V1

P0(i, (x, y))A0(i, j)P0(j, (x′, y′))

∣∣∣∣∣∣∣
q

= (1 − α)E(u,(x,y))∼S∗ |X(u) − X(x)|q + αE (u,(x,y))∼S∗
(u′,(x′,y′))∼S∗

|A0(u, u′) − A0(x, x′)|q (equation 12)

≤ (1 − α)E(u,(x,y))∼S0 |X(u) − X(u)|q + αE (u,(x,y))∼S0
(u′,(x′,y′))∼S0

|A0(u, u′) − A0(u, u′)|q (equation 25)

= 0

Due to the non-negativity property of the FGW distance Vayer et al. (2020), we prove that dFGW(G0, G̃0) = 0,
i.e., G0 ∼ G̃0. Similarly, we can show that G1 ∼ G̃1.

Afterwards, we prove that the interpolation in equation 12 and equation 13 generate intermediate graphs on
the FGW geodesics. According to Vayer et al. (2020), the FGW geodesics connecting G0 and G1 is a graph in
the product space G = (V0 ⊗ V1, Ã, X̃) satisfying the following property:

G̃ t
T

= (Ṽ t
T

, Ã t
T

, X̃ t
T

)

where



Ṽ t
T

= V0 ⊗ V1

Ã t
T

((u, v), (u′, v′))=
(

1− t

T

)
A0(u, u′) + t

T
A1(v, v′), ∀u, u′ ∈ V0, v, v′ ∈ V1

X̃ t
T

((u, v)) =
(

1 − t

T

)
X0(u) + t

T
X1(v), ∀u ∈ V0, v ∈ V1

(26)

Following the transformation in equation 12, for nodes u, u′ ∈ V0 and v, v′ ∈ V1, we can rewrite the transformed
adjacency matrix Ã0 and attribute matrix X̃0 as follows

Ã0((u, v), (u′, v′)) =
∑

i∈V0,j∈V1

P0(i, (u, v))A0(i, j)P1(j, (u′, v′)) = A0(u, u′)

X̃0((u, v)) =
∑
i∈V0

P0(i, (u, v))X0(i) = X0(u)

Therefore, the intermediate graph Ht in equation 13 can be expresserd by:

Ht = (V t
T

, Ã t
T

, X̃ t
T

)

where



V t
T

= V0 ⊗ V1

Ã t
T

((u, v), (u′, v′)) =
(

1 − t

T

)
A0(u, u′) + t

T
A1(v, v′)

X̃ t
T

((u, v)) =
(

1 − t

T

)
X0(u) + t

T
X1(v)
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Now, we consider a naive "diagonal" coupling πt1,t2 between Ht1 , Ht2 as follows

πt1,t2((u, v), (u′, v′)) =
{

π(u, v), if u = u′ and v = v′

0, else

Afterwards, the FGW distance between Ht1 and Ht2 should be less or equal to the FGW distance under the
’diagonal’ coupling, that is:

dFGW(Ht1 , Ht2)

≤
∑

u,v,u′,v′

[
(1 − α)|X̃ t1

T
(u) − X̃ t2

T
(u′)| + α · |Ã t1

T
(u, v) − Ã t2

T
(u′, v′)|

]
πt1,t2((u, v), (u′, v′))

=
∑
u,v

[
(1 − α)|X̃ t1

T
(u) − X̃ t2

T
(u)| + α · |Ã t1

T
(u, v) − Ã t2

T
(u, v)|

]
π(u, v)

According to equation 26, we have∣∣∣X̃ t1
T

(u)−X̃ t2
T

(u)
∣∣∣ =
∣∣∣(1− t1

T
)X0(u) + t1

T
X1(u) − (1− t2

T
)X2(u) − t2

T
X2(u)

∣∣∣ =
∣∣∣ t1 − t2

T

∣∣∣ · |X0(u)−X1(u)|∣∣∣A t1
T

(u, v)−A t2
T

(u, v)
∣∣∣ =
∣∣∣(1− t1

T
)A0(u, v) + t1

T
A1(u, v) − (1− t2

T
)A2(u, v) − t2

T
A2(u, v)

∣∣∣ =
∣∣∣ t1 − t2

T

∣∣∣ · |A0(u, v)−A1(u, v)|

Combine the above two equations, we have

dFGW(Ht1 , Ht2)

≤
∣∣∣∣ t1 − t2

T

∣∣∣∣ ·
∑
u,v

[(1 − α)|X0(u) − X1(u)| + α · |A0(u, v) − A1(u, v)|]π(u, v)

=
∣∣∣∣ t1 − t2

T

∣∣∣∣ dFGW(G0, G1)

(27)

The above inequality holds for any 0 ≤ t1
T ≤ t2

T ≤ 1. In particular, we have

dFGW(G0, Ht1) ≤
∣∣∣∣0 − t1

T

∣∣∣∣ dFGW(G0, G1) = t1

T
dFGW(G0, G1)

dFGW(Ht1 , Ht2) ≤
∣∣∣∣ t1

T
− t2

T

∣∣∣∣ dFGW(G0, G1) = t2 − t1

T
dFGW(G0, G1)

dFGW(Ht2 , G1) ≤
∣∣∣∣ t2

T
− 1
∣∣∣∣ dFGW(G0, G1) = (1 − t2

T
)dFGW(G0, G1)

Finally, by the triangle inequality of FGW distance Vayer et al. (2020), we have

dFGW(G0, G1) ≤ t1

T
dFGW(G0, G1) + t2 − t1

T
dFGW(G0, G1) + (1 − t2

T
)dFGW(G0, G1) = dFGW(G0, G1)

Hence, the ≤ in this inequality is actually =; in particular, dFGW(Ht1 , Ht2) = | t1
T − t2

T |dFGW(G0, G1). Therefore,
we prove that the intermediate graphs Ht generated by equation 13 are on the FGW geodesics connecting G0
and G1.

A.4 Proof for practical error bound

Theorem 4 (Practical error bound). For a sequence of intermediate graphs H̃0, . . . , H̃T on the approximated
FGW geodesics generated by Gadget, performing GDA along the path yield a final error ξ(fT , HT ) on target
graph HT = G1 upper bounded by

ξ(fT , G1) ≤ Original bound + 4Cδapprox

T∑
t=1

dFGW(Ht, Ht+1) + 4CTδ2
approx
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where original bound is the upper bound on the exact geodesics provided in Theorem 1, and δapprox =
maxt dFGW(Ht, H̃t) is the maximum approximation error between exact geodesic graph Ht and low-rank
approximated graph H̃t.

Proof. Let H be the graph on the exact geodesic and H̃ be the graph on the approximate path with rank-r.
We use P to denote the optimal coupling and P̃ to denote the approximated low-rank coupling. We denote
∆P = ∥P − P̃ ∥F . We denote δapprox = maxt dFGW(Ht, H̃t) as the maximum approximation error between
the exact geodesic graph Ht (full-rank) and approximated geodesic graph H̃t.

First, we bound the approximation gap δapprox. When considering a naive identity coupling (i.e., the i-th
node in Ht align with the i-th node in H̃t) between Ht and H̃t, it induces an upper bound of the FGW
distance as

d2
FGW(Ht, H̃t) ≤ (1 − α)∥Xt − X̃t∥F + α∥At − Ãt∥F

According to the transformation in Eq. 13, feature error at step t can be written as

∥Xt − X̃t∥F = ∥(1 − t

T
)(P T

0 − P̃ T
0 )X0 + t

T
(P T

1 − P̃ T
1 )X1∥F ≤ (1 − t

T
)∆P0∥X0∥F + t

T
∆P1∥X1∥F

Similarly, the structure error at step t can be written as

∥At − Ãt∥F = ∥(1 − t

T
)(P T

0 A0P0 − P̃ T
0 A0P̃0) + t

T
(P T

1 A1P1 − P̃ T
1 A1P̃1)∥F

≤ (1 − t

T
)∥P T

0 A0(P0 − P̃0) + (P0 − P̃0)A0P̃0∥F + t

T
∥P T

1 A1(P1 − P̃1) + (P1 − P̃1)A1P̃1∥F

≤ (1 − t

T
)∆P0∥A0∥F (∥P0∥F + ∥P̃0∥F ) + t

T
∆P1∥A1∥F (∥P1∥F + ∥P̃1∥F )

Therefore, the approximation error can be bounded by

d2
FGW(Ht, H̃t) ≤ (1− t

T
)∆P0((1−α)∥X0∥F +α∥A0∥F (∥P0∥F +∥P̃0∥F ))+ t

T
∆P1((1−α)∥X1∥F +α∥A1∥F (∥P1∥F +∥P̃1∥F ))

Afterwards, we analyze the impact of the approximation error on the error bound. We first apply the triangle
inequality on the FGW distance as

dFGW(H̃t, H̃t+1) ≤ dFGW(H̃t, Ht) + dFGW(Ht, Ht+1) + dFGW(Ht+1, H̃t+1)

Therefore, the error bound in Theorem 1 can be written as

ξ(fT , G0) ≤ Original bound + 4Cδapprox

T∑
t=1

dFGW(Ht, Ht+1) + 4CTδ2
approx

Note that when r → |V1||V2|, i.e., full rank, we have ∆Pi → 0, i.e., ∥At − Ãt∥F → 0, ∥Xt − X̃t∥F → 0.
Therefore, we have δapprox = maxtdFGW(Ht, H̃t) → 0 where approximation errors are eliminated.
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B Algorithm

We first provide the detailed algorithm of the proposed Gadget in Algorithm 1, which generates the path
for graph GDA.

Algorithm 1 Gadget
1: Input source graph G0 = (V0, A0, X0), target graph G1 = (V1, A1, X1), number of stages T , marginals

µ0, µ1, rank r, step size γ, lower bound α, error threshold δ.
2: Initialize transformation matrices g(0) ∈ ∆r, Q

(0)
0 ∈ Π(µ0, g), Q

(0)
1 ∈ Π(µ1, g);

3: Compute attribute distance matrix M(u, v) = ∥X0(u) − X1(v)∥2, ∀u ∈ V0, v ∈ V1;
4: for t = 0, 1, ... do
5: B(t) = −αM +4(1 − α)A0Q

(t)
0 diag(1/g(t))Q(t)T

1 A1;
6: ξ1 = exp

(
γB(t)Q

(t)
1 diag(1/g(t))

)
⊙ Q

(t)
0 ;

7: ξ2 = exp
(

γB(t)T
Q

(t)
0 diag(1/g(t))

)
⊙ Q

(t)T

1 ;

8: ξ3 = exp
(

−γdiag
(
Q

(t)T

0 B(t)Q
(t)
1

)
/g(t)2

)
⊙ g(t);

9: Q
(t+1)
0 , Q

(t+1)
1 , g(t+1) = LR-Dykstra(ξ1, ξ2, ξ3, µ0, µ1, α, δ) Scetbon et al. (2021);

10: end for
11: Normalize transformation matrices P0 = Q0diag(1/g), P1 = Q1diag(1/g);
12: Compute transformed adjacency matrices Ã0 = P T

0 A0P0, Ã1 = P T
1 A1P1;

13: Compute transformed attribute matrices X̃0 = P T
0 X0, X̃1 = P T

1 X1;
14: Compute transformed marginals µ̃0 = P T

0 µ0, µ̃1 = P T
1 µ1;

15: Generate intermediate graphs Ht :=
(
V0 ⊗ V1,

(
1− t

T

)
Ã0+ t

T Ã1,
(
1− t

T

)
X̃0+ t

T X̃1
)

, ∀t = 1, 2, ..., T − 1;
16: return path H = (H0, H1, ..., HT ).

After obtaining the path by Algorithm 1, we can perform self-training along the path for GDA. The detailed
algorithm is provided in Algorithm 2.

Algorithm 2 Graph gradual domain adaptation
1: Input source graph G0 = (V0, A0, X0), source node label Y0, target graph G1 = (V1, A1, X1), number of

stages T ;
2: Generate path H = (H0, H1, ...HT ) for graph GDA by Gadget in Algorithm 1
3: Set initial confidence score conf0 = Unif(|V0|)
4: for t = 0, 1, ..., T − 1 do
5: Train and adapt GNN model ft by arg minfθ

ℓ(Ht, Ht+1, Yt+1, conft);
6: Obtain pseudo-labels by Yt+1 = ft(Ht+1);
7: Compute confidence score conft+1 on Ht+1 by Eq. equation 15;
8: end for
9: return target GNN model fT .

C Additional Experiments

We provide additional experiments and analysis to better understand the proposed Gadget.

C.1 Experiment Result Statistics

We provide more statistics on the benchmark results in Figure 2, and the statistics are shown in Table 1. We
report the Average, Maximum and Minimum improvement of Gadget on direct adaptation with different
DA methods and backbone GNNs. We also report the percentage of cases where Gadget outperforms
(Positive) or underperforms (Negative) direct adaptation. It is shown that Gadget achieves positive average
improvement on all datasets, with impressive maximum improvements of at least 9.83%. For cases where
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Table 1: Statistics on experiment results. All number are reported in percentage (%).
Dataset Average Max Min Positive Negative
Airport 6.77 26.30 -1.75 94.40 5.56
Social 3.58 15.00 -2.51 91.57 8.33
Citation 3.43 9.83 -1.81 91.57 8.33
CSBM 36.51 48.00 16.67 100.0 0.00

Gadget fails, it still achieves comparable results with at most 2.51% degradation. However, as the columns
Positive and Negative show, Gadget outperforms direct DA in over 90% cases, with only less than 9% cases
with negative transfer.

C.2 Computation Complexity Analysis

Figure 8: Run time analysis w.r.t. graph
size. The y-axis is in the log scale.

We analyze the time complexity of Gadget. Suppose we
have source and target graphs with O(n) nodes, node feature
dimension of d, and low-rank OT rank of r. The time complexity
for path generation is O(Lndr+Ln2r), where L is the number of
iterations in the low-rank OT algorithm in Algorithm 1. Besides,
as gradual GDA involves repeated training along the path, an
additional O(Tttrain) complexity is needed, where O(ttrain) is
the time complexity for training a GNN model. Therefore, the
overall training complexity is O(Lndr + Ln2r + Tttrain), which
is linear w.r.t. the feature dimension d and the number of steps
T , and quadratic w.r.t. the number of nodes n.

We also carry out experiments to analyze the run time w.r.t.
the number of nodes n with different ranks r, and the result is
shown in Figure 8. It is shown that Gadget scales relatively
well w.r.t. the number of nodes, exhibiting a sublinear scaling
of log(time) w.r.t. the number of nodes. Moreover, the computation can be further accelerated by reducing
the rank. When r is reduced from full-rank (1.00n) to low-rank (0.25n), the run time can be reduced from
175 seconds to 30 seconds on graphs with 10,000 nodes.

C.3 Intermediate graphs.

We provide visualization results to understand the proposed graph GDA process, where the intermediate
graphs between a 3-block graph and 2-block graph are shown in Figure 9. We observe a smooth transition
from 3-block graph to 2-block graph with small shifts between two consecutive graphs.

Figure 9: Visualization of the intermediate graphs.

C.4 Pseudo-label confidence

To understand how entropy-based confidence facilitates self-training, we visualize the embedding spaces
learned with and without entropy-based confidence, and the results are shown in Figure 10. It is shown
that noisy pseudo-labels near the decision boundary are assigned with lower confidence, contributing less
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(a) embedding w/o confidence (b) embedding w/ confidence (c) performance comparison

Figure 10: Evaluation on pseudo-label quality. Larger marker size indicate more confident pseudo-label. (a)
Embedding space w/o confidence; (b) Embedding space w/ confidence. (c) Performance comparison: we
evaluate graph GDA guided by different paths w/ (hatched bars) and w/o (colored bars) confidence scores.

to self-training. In addition, we observe that the embedding space trained with confidence better separates
different classes in the target domain, hence achieving better performance. Besides, we also quantitatively
evaluate the universal benefits of entropy-based confidence by generating the intermediate graphs via different
graph mixup methods Han et al. (2022); Ma et al. (2024).

D Reproducibility

D.1 Datasets

We first introduce the datasets used in this paper, including three real-world datasets and three synthetic
CSBM datasets, and the datasets statistics are provided in Table 2. For real-world datasets, we give a brief
introduction as follows

• Airport Ribeiro et al. (2017) is a set of airport traffic networks, each of which is an unweighted,
undirected network with nodes as airports and edges indicate the existence of commercial flights.
Node labels indicate the level of activity of the corresponding airport. We use degree-bucking to
generate one-hot node feature embeddings. The dataset includes three airports from USA, Europe
and Brazil.

• Citation Tang et al. (2008) is a set of co-authorship networks, where nodes represent authors and
an edge exists between two authors if they co-authored at least one publication. Node labels indicate
the research domain of the author, including "Database", "Data mining", "Artificial intelligence",
"Computer vision", "Information security" and "High performance computing". Node features are
extracted from the paper content. The dataset includes two co-author networks from ACM and
DBLP.

• Social Li et al. (2015) is a set of blog networks, where nodes represent bloggers and edges represent
friendship. Node labels indicate the joining groups of the bloggers. Node features are extracted from
blogger’s self-description. The dataset includes two blog networks from BlogCatalog (Blog1 ) and
Flickr (Blog2 ).

For synthetic datasets, we generate them based on the contextual block stochastic model (CSBM) Deshpande
et al. (2018). In general, we consider a CSBM with two classes C+ = {vi : yi = +1} and C− = {vi : yi = −1},
each with N

2 nodes. For a node vi, the node attribute is independently sampled from a Gaussian distribution
xi ∼ N (µi, I). For nodes from class C+, we have µi = µ+; and for nodes from class C−, we have µi = µ−.
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Table 2: Dataset statistics.
Dataset Domain #node #edge #feat #class

Airport
USA 1,190 13,599 64 4
Brazil 131 1,038 64 4
Europe 399 6,193 64 4

Citation ACM 7,410 14,728 7,537 6
DCLP 5,995 10,079 7,537 6

Social Blog1 2,300 34,621 8,189 6
Blog2 2,896 55,284 8,189 6

CSBM

Left 500 5,154 64 2
Right 500 5,315 64 2
Low 500 2,673 64 2
High 500 10,302 64 2
Homophily 500 5,154 64 2
Heterophily 500 5,163 64 2

Each pair of nodes are connected with probability p if they are from the same class, otherwise q. By varying
the value of µ+, µ−, we can generate graphs with feature shifts. By varying the value of p, q, we can generate
graphs with homophily shifts with homophily score as h = p

p+q , and degree shifts with average degree as
d = N(p+q)

2 . We provide more detailed description of generating the CSBM graphs as follows

• CSBM-Attribute is a set of CSBM graphs with attribute shifts. We generate two graphs with
attributes shifted left (namely Left) and right (namely Right). We set the number of nodes as 500,
homophily score as h = 0.5, average degree as 40, and feature dimension as 64. For node attributes,
we set the µ+ = 0.6, µ− = −0.4 for Right, and µ+ = 0.4, µ− = −0.6 for Left.

• CSBM-Degree is a set of CSBM graphs with degree shifts. We generate two graphs with degree shifted
high (namely High) and low (namely Low). We set the number of nodes as 500, homophily score as
h = 0.5, feature dimension as 64, and features with µ+ = 0.5, µ− = −0.5. For node degree, we set
d = 80 for High and d = 20 for Low.

• CSBM-Homophily is a set of CSBM graphs with homophily shifts. We generate two graphs with
homophilic score (namely Homophily) and heterophilic score (namely Heterophily). We set the number
of nodes as 500, average degree as 40, feature dimension as 64, and features with µ+ = 0.5, µ− = −0.5.
For homophily score, we set the h = 0.8 for Homophily, and h = 0.2 for Heterophily.

D.2 Pipeline

We focus on the unsupervised node classification task, where we have full access to the source graph, the
source node labels, and the target graph during training. Our main experiments include two parts, including
direct adaptation and GDA using Gadget. For direct adaptation, we perform directly adapt the source
graph to target graph. For GDA, we first use Gadget to generate intermediate graphs, then gradually adapt
along the path.

For path generation, we set the number of intermediate graphs as T = 3, and have all graphs uniformly
distributed on the geodesic connecting source and target. We set q = 2 and α = 0.5 for the FGW distance,
and adopt uniform distributions Unif(|V0|), Unif(|V1|) as the marginals.

For GNN models, we adopt light 2-layer GNNs with 8 hidden dimensions for smaller Airport and CSBM
datasets, and heavier 3-layer GNNs with 16 hidden dimensions for larger Social and Citation datasets. We
set the initial learning rate as 5 × 10−2 and train the model for 1,000 epochs.
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We implement the proposed method in Python and all backbone models based on PyTorch. For model
training, all GNN models are trained on the Linux platform with an Intel Xeon Gold 6240R CPU and an
NVIDIA Tesla V100 SXM2 GPU. We run all experiments for 5 times and report the average performance.

E More Related Works

Graph Domain Adaptation Graph DA transfers knowledge between graphs with different distributions
and can be broadly categorized into data and model adaptation. Early graph DA methods drew inspiration
from vision tasks by applying adversarial training to learn domain-invariant node embeddings Shen et al.
(2020); Dai et al. (2022), analogous to DANN in images Ganin et al. (2016). Wu et al. (2020) introduced an
unsupervised domain adaptive GCN that minimizes distribution discrepancy between graphs. Others exploit
structural properties Wu et al. (2023); Guo et al. (2022), such as degree distribution differences Guo et al.
(2022) and Subtree distance Wu et al. (2023). A hierarchical structure is further proposed by Shi et al. (2023a)
to align graph structures hierarchically. The rapid progress in this area has led to dedicated benchmarks Shi
et al. (2023b) and surveys Wu et al. (2024); Shi et al. (2024), consolidating GDA techniques. These studies
consistently report that large distribution shifts between non-IID graph domains remain difficult to overcome,
motivating novel solutions such as our OT-based geodesic approach for more effective cross-graph knowledge
transfer.

Gradual Domain Adaptation Gradual domain adaptation (GDA) addresses scenarios of extreme domain
shifts by introducing a sequence of intermediate domains that smoothly connect the source to the target.
Traditional methods in vision have instantiated the idea of GDA by generating intermediate feature spaces or
image styles that interpolate between domains Gong et al. (2019); Hsu et al. (2020). For instance, DLOW
Gong et al. (2019) learns a domain flow to progressively morph source images toward target appearance,
and progressive adaptation techniques have improved object detection across environments Hsu et al. (2020).
Recently, the theory of gradual adaptation has been formalized Kumar et al. (2020); Wang et al. (2022);
Abnar et al. (2021); Chen & Chao (2021), where the benefits of intermediate distributions and optimal path
have been studied. He et al. (2023) further provides generalization bounds proving the efficacy of gradual
adaptation under certain conditions. On the algorithmic front, methods to construct or simulate intermediate
domains have emerged. Sagawa & Hino (2022) leverages normalizing flows to synthesize a continuum of
distributions bridging source and target, while Zhuang et al. (2024) employs a Wasserstein gradient flow
to gradually transport source samples toward the target distribution. This gradual paradigm has only just
begun to be explored for graph data, e.g., recent work suggests that interpolating graph distributions can
significantly improve cross-graph transfer when direct adaptation fails due to a large shift. By viewing domain
shift as a trajectory in a suitable metric space, one can effectively guide the model through intermediate
graph domains, which is precisely the principle our FGW geodesic strategy instantiates.

Graph Neural Networks Graph Neural Network (GNN) is a prominent approach for learning on graph-
structured data, with wide applications in fields such as social network analysis Jing et al. (2024); Fu & He
(2021); Yan et al. (2024a), bioinformatics Fu & He (2022); Xu et al. (2024b), information retrieval Wei et al.
(2020); Li et al. (2024a;b); Liu et al. (2024c) and recommendation Liu et al. (2024b); Zeng et al. (2024b;
2025a;b); Liang et al. (2025); Yoo et al. (2023), and tasks like graph classification Xu et al. (2018); Lin et al.
(2024b); Zheng et al. (2024), node classification Yan et al. (2024c); Liu et al. (2023b); Lin et al. (2024a); Xu
et al. (2024a); Yan et al. (2023), link prediction Yan et al. (2022; 2024b), and time-series forecasting Lin
et al. (2025; 2024c); Qiu et al. (2023); Wang et al. (2023). Foundational architectures such as GCN Kipf &
Welling (2017), GraphSAGE Hamilton et al. (2017), and GAT Velickovic et al. (2017) introduced effective
message-passing schemes to aggregate neighbor information, and subsequent variants have continuously
pushed state-of-the-art performance. However, distribution shift poses a serious challenge to GNNs in practice:
models trained on a source graph often degrade when applied to a different graph whose properties deviate
significantly. This lack of robustness to domain change has prompted research into both graph domain
generalization and graph domain adaptation. On the generalization side, methods inject regularization or
data augmentation to make GNNs invariant to distribution changes such as graph mixup Ma et al. (2024);
Zeng et al. (2024c); Zhou et al. (2024). On the adaptation side, numerous domain-adaptive GNN frameworks
aim to transfer knowledge from a labeled source graph to an unlabeled target graph by aligning feature and
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structural representations Shen et al. (2020); Dai et al. (2022); Liu et al. (2023a). Despite these advances,
adapting GNNs to out-of-distribution graphs remains non-trivial, especially under large shifts. Besides,
test-time adaptation on graphs has been studied recently Bao et al. (2024); Chen et al. (2022b); Jin et al.
(2022); Zeng et al. (2026) where the GNN model is adapted at test time without re-accessing the source
graph. However, existing graph DA methods implicitly assume a mild shift between the source and the target
graph, while our work focuses on the more challenging setting where source and target graphs suffer from
large shifts.

Optimal Transport on Graphs Optimal Transport (OT) provides a principled framework to compare
and align distributions with geometric awareness, making it particularly well-suited for graph-structured
data. OT-based methods have been used in graph alignment Xu et al. (2019); Zeng et al. (2023a; 2024a); Yu
et al. (2025b;a), graph comparison Maretic et al. (2019); Titouan et al. (2019), and graph representation
learning Kolouri et al. (2021); Vincent-Cuaz et al. (2021); Zeng et al. (2023b). The Gromov–Wasserstein
(GW) distance Mémoli (2011); Peyré et al. (2016) enables comparison between graphs with different node
sets and topologies, and defines a metric space where geodesics can be explicitly characterized Sturm (2012).
Recent work Scetbon et al. (2022) further demonstrates how OT couplings can serve as transport maps that
align and interpolate between graphs in this space. These advances provide the theoretical foundation for our
work, which leverages Fused GW distances to construct geodesic paths between graph domains for GDA.

F Limitations and Future Directions

In this paper, we explore the idea of apply GDA for non-IID graph data to handle large graph shifts. We
mainly focus on the unsupervised DA setting, with only one source domain and one target domain. Based
on this limitation, we discuss possible directions and applications to further benefit and extend the current
framework, including:

• Multi-source graph GDA. In this paper, we focus on the graph DA setting with one labeled source
graph and unlabeled target graph. In real-world scenarios, we often have labeled information from
multiple domains. Therefore, it would be beneficial to study multi-source graph GDA to leverage
information from multiple source graphs.

• Few-shot graph GDA. In this paper, we focus on the unsupervised graph DA task where there is
no label information for target samples. There may be cases where few target labels are available,
and it would be beneficial to leverage such information into the graph GDA process. One possible
solution is to leverage the graph mixup techniques Han et al. (2022); Ma et al. (2024); Zeng et al.
(2024c) to generate pseudo-labels for intermediate nodes by the linear interpolation of source and
target samples.

• When to adapt. While we mainly focus on how to best adapt the GNN model, an important question
is when to adapt. For example, to what extent the domain shift is large enough to perform GDA?
To what extent the domain shift is mild enough to perform direct adaptation or no adaptation. We
believe that more powerful graph domain discrepancies such as the FGW distance provide solution
to this problem.

• Scalable GDA via Graph Coarsening. To extend GADGET to massive-scale graphs (e.g., millions
of nodes) where quadratic complexity is prohibitive, a promising future direction is Hierarchical
Graph GDA. We plan to incorporate graph coarsening techniques (e.g., spectral clustering or edge
contraction) to abstract the original graph into a smaller "super-node" graph. The FGW geodesic
and transport plan can be efficiently computed on this coarsened level and then projected back to the
original fine-grained graph. This "Coarsen-Align-Refine" strategy aims to reduce the effective number
of nodes n in the OT solver, potentially achieving near-linear time complexity while preserving global
structural alignment.
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