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Abstract

Diffusion models are known for their supreme capability to generate realistic images. However,
ethical concerns, such as copyright protection and the generation of inappropriate content,
pose significant challenges for the practical deployment of diffusion models. Recent work has
proposed a flurry of watermarking techniques that inject artificial patterns into initial latent
representations of diffusion models, offering a promising solution to these issues. However,
enforcing a specific pattern on selected elements can disrupt the Gaussian distribution
of the initial latent representation. Inspired by watermarks for large language models
(LLMs), we generalize the LLM KGW watermark to image diffusion models and propose a
stealthy probability adjustment approach DiffKGW that preserves the Gaussian distribution
of initial latent representation. In addition, we dissect the design principles of state-of-
the-art watermarking techniques and introduce a unified framework. We identify a set of
dimensions that explain the manipulation enforced by watermarking methods, including
the distribution of individual elements, the specification of watermark shapes within each
channel, and the choice of channels for watermark embedding. Through the empirical studies
on regular text-to-image applications and the first systematic attempt at watermarking
image-to-image diffusion models, we thoroughly verify the effectiveness of our proposed
watermark identification framework through comprehensive evaluations. On all the diffusion
models, including Stable Diffusion, our approach induced from the proposed framework not
only preserves image quality but also outperforms existing methods in robustness against a
wide range of attacks.

1 Introduction

The rise of diffusion models has significantly impacted image generation, enabling the creation of diverse
and high-quality images across various styles. However, the widespread use of these models also introduces
critical ethical challenges, particularly concerning copyright protection and the generation of inappropriate or
misleading content. In this regard, watermarking generated images offers a promising approach to tracing
image origins and mitigating potential misuse.

A core challenge in image watermarking identification is the trade-off between the robustness of the watermark
and the quality of the generated images. Traditional watermarking techniques (Al-Haj, 2007; Navas et al.,
2008) primarily rely on post-processing methods to embed subtle modifications into the image’s frequency
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Figure 1: Illustration of the watermarking process, showing the relationship between LLMs and diffusion
models. (a) Original Distribution: Initial probability distributions for both LLM and diffusion models. (b)
Watermarked Distribution: Adjusted probabilities for selected elements, with a red/green split in the LLM
echoed in the diffusion model’s modified red/green sampling distribution. (c) Output: Sampled outputs with
watermarks.

representation, making them imperceptible to human users. Though effective, these approaches suffer from
reduced image quality and insufficient robustness against common attacks such as compression and cropping,
to name a few.

To improve the trade-off, end-to-end deep learning methods (Zhang et al., 2019; Zhu et al., 2018; Hayes &
Danezis, 2017) are proposed to construct watermarks with powerful learning capabilities, while such methods
are black-box and require additional training. Specifically for diffusion models, latent-representation-based
watermarking methods (Wen et al., 2023; Yang et al., 2024) have been developed, which embed watermarks
by manipulating latent representations to match predefined patterns.

However, enforcing a specific pattern on selected elements can disrupt the independent and identically
distributed (IID) Gaussian distribution of the initial latent representation. Inspired by watermarks for
large language models (LLMs), we generalize the LLM KGW watermark (Kirchenbauer et al., 2023) to
image diffusion models and propose a stealthy probability adjustment approach that preserves the Gaussian
distribution of initial latent representation, as illustrated in Figure 1. In addition to that, the key components
thereof are poorly understood, and the connections between watermarking methods remain unclear. In
this paper, we carefully analyze state-of-the-art watermarking methods, and introduce a unified framework
that identifies and connects the underlying design principles. This framework reveals three critical design
dimensions: ❶ the distribution of individual elements, ❷ the specification of watermark shapes within
each channel, and ❸ the choice of channels for embedding. Under the unified framework, we integrate
key designs from both image and language watermarking; we propose a novel, training-free watermarking
approach that applies directly to diffusion models without altering the training process. Notably, our
method embeds watermarks directly into the latent space of diffusion models (rather than the frequency
domain), avoiding extraneous operations and errors during detection. Extensive experiments are conducted;
in addition to conventional focus on text-to-image generation, we extend the application scope of our proposed
image watermarking to the scenarios involving image-to-image diffusion model. Our method turns out both
preserving visual quality of generated images and providing robustness against a wide range of adversarial
attacks.

In summary, our paper contributes the following:
• We present a unified taxonomy that identifies and connects the key design principles underlying state-of-

the-art watermarking identification methods.

• Under the unified watermark identification taxonomy, we propose a novel, training-free watermark-
ing method, and theoretical analysis showing preservation of the latent representation distribution is
accompanied.
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Figure 2: Structured overview of diffusion watermarking. In the embedding phase, watermark signals
are injected into the latent noise along three orthogonal dimensions: (i) element sampling, which selects
latent positions for modification; (ii) shape design, defining geometric structures such as rings or patches;
and (iii) channel selection, identifying robust latent channels. The modified latent is then denoised by the
diffusion model to produce the watermarked image.

• We extend watermarking techniques beyond the traditional focus on text-to-image generation scenario,
and give the first systematic approach to watermarking image-to-image diffusion models. Our proposed
method exhibits robustness against a variety of adversarial attacks and high visual quality, validating the
efficacy of our method as well as the unified framework.

2 Preliminaries

In this section, we recap the diffusion process, LLM KGW watermarking, and provide a holistic framework
for diffusion watermarking. A comprehensive survey of related work is provided in Section 6.

2.1 Diffusion Process

Diffusion. This section recaps key concepts of Latent Diffusion Models (LDMs), focusing on the diffusion
process, denoising methods like DDIM, and inversion techniques for watermark detection. To map a regular
image x ∈ RH×W ×3 to the latent space, Latent Diffusion Models (LDMs) formally behave as an autoencoder,
using an encoder E to obtain the representation z0 as z0 = E(x) ∈ Rh×w×c; conversely, a decoder D
reconstructs the image x from the latent space as x = D(z0). In generating images, (dropping the encoder
E and) directly feeding a random signal z0 to the decoder D of a pre-trained LDM can provably return an
image following the pre-training distribution. In addition to the autoencoder framework, LDMs leverage a
diffusion-like process to obtain z0. Specifically, an initial latent representation zT ∈ Rh×w×c is first sampled
from a standard Gaussian distribution N (0, I); subsequently, iterative denoising methods like DDIM (Song
et al., 2020) are used to transform zT into z0, and the decoder then generates the image: x = D(z0).

Inversion. Beyond standard LDMs, inversion techniques (Dhariwal & Nichol, 2021) enable moving in
the opposite direction—from a generated image back to the initial noise state. Previous empirical findings
(Wen et al., 2023) suggest that DDIM inversion reliably reconstructs the initial noise, with ẑT ≈ zT . DDIM
inversion can thus be used for watermark detection. Given a generated image x and its associated starting
noise zT , we apply DDIM inversion to recover ẑT . This property allows us to compare the reconstructed
noise to the original to detect embedded watermarks effectively.
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2.2 LLM KGW Watermark

Here we introduce the basic LLM KGW watermark (Kirchenbauer et al., 2023; Zhao et al., 2024b) briefly.
Let s be a secret key, and let t be a token from the vocabulary V. We can partition V into two subsets of
equal size: GreenList and RedList.

Given the original distribution p(t | C) over tokens under context C, KGW watermarking modifies sampling
by allowing tokens only from the GreenList:

ptrunc(t | C) =


p(t | C)

Z
, t ∈ GreenList,

0, t ∈ RedList,

where Z =
∑

t′∈GreenList p(t′ | C) is a normalizing constant. This ensures that all sampled tokens belong to
the GreenList, leaving a distinct distributional footprint that can be verified during test time.

3 A Structured Overview of Watermarking

Pipeline overview. Figure 2 illustrates a concise end-to-end overview of our approach, covering both the
embedding and detection phases of diffusion watermarking. To embed a robust and stealthy watermark, we
categorize latent watermarking methods into three orthogonal design dimensions: ❶ element sampling,
which selects latent positions for watermark injection; ❷ watermark shapes, defining geometric structures
such as rings or patches; and ❸ channel selection, identifying latent channels that yield the most stable
watermark signals. In the embedding phase, watermark bits are injected into the latent noise zT according
to these dimensions, and the modified latent z̃T is then denoised by the diffusion model to produce the
final watermarked image. During detection, DDIM inversion reconstructs the latent ẑT from a given image
(possibly attacked), and the same three dimensions are used to statistically verify watermark presence.
Sampling of Individual Elements. The first dimension concerns how values are assigned to each element.
Tree-ring (Wen et al., 2023) sets a constant value in the Fourier frequency domain within each circle, forming
a ring-like pattern. Ring-ID (Ci et al., 2024) refines this by applying the pattern only to the real part of
the Fourier transform, enhancing imperceptibility. Post-hoc methods like DwtDctSVD (Cox et al., 2007)
modify wavelet coefficients, adjusting DCT singular values in the DWT domain for watermark embedding.
Gaussian-shading (Yang et al., 2024) embeds the watermark in the spatial domain by sampling values from a
constrained distribution. Learning-based methods, such as Stable Signature (Fernandez et al., 2023) and
AquaLoRA (Feng et al., 2024), tune model weights to integrate the watermark.
Design of Watermark Shapes. The second dimension defines the watermark shape within each h× w
channel. Tree-ring (Wen et al., 2023) and Ring-ID (Ci et al., 2024) use concentric rings in the frequency domain
to target specific components, improving robustness against geometric transformations. DwtDctSVD (Cox
et al., 2007) embeds watermarks into pixel blocks within the combined DWT and DCT domains, while
Gaussian-shading (Yang et al., 2024) also employs block-based embedding to improve noise resistance.
Learning-based methods distribute the watermark across all locations, adapting the embedding to training
conditions.

Choice of Channels for Watermark Embedding. The third dimension involves selecting channels
for watermark embedding among the c channels. Tree-ring (Wen et al., 2023) and post-hoc methods like
DwtDctSVD (Cox et al., 2007) embed watermarks in specific channels based on empirical insights, prioritizing
those less sensitive to perceptual changes to preserve image quality. In contrast, Gaussian-shading (Yang
et al., 2024), Ring-ID (Ci et al., 2024), and learning-based methods distribute the watermark across all
channels with empirical selection strategies, utilizing the full latent space to enhance robustness against
attacks.

Insights from the Unified Framework. By structuring latent watermarking methods into three dimen-
sions, our framework enables systematic comparison and reveals key challenges in existing approaches: how
to sample individual elements akin to distribution-preserving methods in LLM watermarking for stealthy yet
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detectable embedding, how to design watermark shapes resilient to both noise and geometric transformations,
and how to develop channel selection for effective watermarking.

4 Methodology

In this section, based on the identified dimensions, we generalize the LLM KGW watermark to image diffusion
models by preserving the distribution, as well as addressing vision-specific challenges in shape and channel
dimensions to enhance the robustness and stealthiness of the watermark.

4.1 Basic: Generalizing LLM Watermarking

As discussed in Section 3, previous methods like Tree-ring, Ring-id, and DwtDctSvd heavily relied on
setting selected watermarked elements to pre-defined constants. However, the fixed-value operations can
substantially disrupt the IID nature of the latent representations, considering the h× w × c elements in a
latent representation are indeed IID standard univariate Gaussians N (0, 1). Moreover, under various attacks
these elements can easily be altered, making the watermark difficult to detect.

To overcome these limitations, we propose a distribution-preserving watermarking technique (the charac-
teristic of distribution preservation is reflected in Lemma 1). Inspired by the LLM KGW watermarking
method (Kirchenbauer et al., 2023; Zhao et al., 2024b) widely studied in large language models (LLMs),
we aim to adapt its principles to diffusion models. However, directly applying KGW to diffusion models is
non-trivial. Unlike LLMs, which sample discrete tokens from a categorical distribution, diffusion models
operate in a continuous latent space, requiring a distinct approach to maintain distribution preservation. To
this end, we divide the density function ϕ(x) of the standard Gaussian distribution into two regions (Red
and Green) of equal probability 0.5. Specifically, we partition the standard Gaussian distribution at the
origin, yielding two TruncatedGaussian distributions over (−∞, 0] and (0,∞). Each latent element ze

T is
assigned to one of these truncated intervals based on the watermark bit m ∈ {0, 1}, ensuring that the latent
representations adhere to the following distribution:

ptrunc(ze
T | m) =


ϕ(ze

T )
Φ(0) if m = 0, ze

T ≤ 0
ϕ(ze

T )
1−Φ(0) if m = 1, ze

T > 0
0 otherwise (Red Region)

(1)

where ϕ(·) is the standard Gaussian density function, and Φ(·) is its cumulative distribution function (CDF),
where Φ(0) = 0.5. To be specific, this distribution can be computed as follows:

ze
T =

{
−|ξ|, if m = 0,

+|ξ|, if m = 1,
ξ ∼ N (0, 1). (2)

Figure 3 illustrates the sampling process of our proposed method. This approach can also be extended to
multiple (i.e., more than 2) cumulative probability portions to encode more watermark bits.

The following lemma shows the proposed watermarking technique is distribution-preserving (a detailed proof
and its generalized multi-bit extension are provided in Appendix B.1)
Lemma 1 (Marginal Distribution of Elements (Galli et al., 1994; Del Castillo, 1994; Yang et al., 2024)).
Every element in the latent representation of truncated Gaussian marginally follows the standard normal
distribution N (0, 1).

4.2 Robustness and Stealthiness via Shape Design

Compared to LLM watermarking, image watermarking requires specifying the watermarking shape for each
channel, i.e., the collection of elements to be watermarked; watermarks uniformly applied across the entire
input can be overly sensitive to various transformations, making detection vulnerable to noise, distortions,
or local perturbations. In this regard, previous works primarily define watermark embedding shapes as

5



Published in Transactions on Machine Learning Research (02/2026)

Original 𝐦=0 𝐦=1

Figure 3: Standard normal distribution partitioning based on watermark value m. The left shows the original
Probability Density Function (PDF), while the middle and right plots illustrate the “green" and the “red"
regions for m = 0 and m = 1, respectively, with the dividing line at x = 0. The values are sampled from the
green region.

Figure 4: Visualization of Gaussian Ring Watermarking for geometric robustness. The left image shows two
Gaussian rings embedded in the latent space, with deep green and light green indicating the two rings. The
top and bottom examples on the right illustrate how different truncated Gaussian distribution are mapped to
these rings in the latent space.

ring-shaped (Wen et al., 2023), block-shaped (Cox et al., 2007), or learnable values distributed across all
locations (Zhang et al., 2019). In this section, we will illustrate how to specify the shapes for the watermark,
to improve robustness and stealthiness.

“Gaussian Ring” Watermarking for Geometric Robustness. Given the more specific requirement
to handle geometric transformations, we introduce an alternative approach to complement our framework:
injecting the so-called “Gaussian Rings” into the representation of the latent space. The concept of “ring”
implies a representation tensor is divided by a series of disjoint rings, which naturally inherits the “redundancy”
idea and enhances robustness.

In detail, each Gaussian Ring is a meticulously structured ring-shaped watermark carrying a specific watermark
value, designed to provide rotational invariance. As shown in Figure 4, the elements on a ring with a specific
radius share the same watermark value, all sampled from a truncated Gaussian with a designated (“green”)
region. Our method embeds ring-shaped watermarks directly in the spatial domain, enabling seamless
integration with the diffusion process without requiring frequency-based transformations. The process is
illustrated in Algorithm 1 of Appendix A.2.

“Random Gaussian” Watermarking with Redundant and Dispersed Watermarks. The idea
of “Random Gaussian” is to introduce redundancy to attain resistance to attacks. Inspired by Vision
Transformers (Dosovitskiy et al., 2020), we split the initial input into patches, each carrying an identical
watermark matrix W of the same shape as the patch; every element of W is a watermark value m denoting
the “green” region. This redundancy strengthens robustness, as information from multiple patches can be
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aggregated during detection; even if some patches are compromised, ensemble methods help reconstruct the
watermark, as formalized in the proposition in the next subsection.

However, redundant patterns over block-shaped patches notably introduces another challenge—the substantial
degradation of generation quality due to the artificial structuring of the input. To maintain image fidelity
while preserving watermark robustness, we move away from the concept of fixed block-shaped patches, and
instead suggest randomly coordinated shapes that exhibit more natural distribution (c.f. the illustration
in Figure 5 and the technical analysis in Proposition 2). Technically, we will uniformly sample a permutation
of the representation elements and then adopt the block-shaped specification, which thoroughly disperse
the elements. To ensure high-quality randomness, we employ the Chacha20 encryption algorithm (Bernstein
et al., 2008). The method is illustrated in Algorithm 2 of Appendix A.2.

4.3 Theoretical Analysis on Robustness and Stealthiness

We first show that ensemble methods of multiple patches help ensure reliable and robust detection.
Proposition 1 (Patch Aggregation Robustness). Let zT represent the latent representation in a diffusion
model, with r denoting the probability of independently correctly detecting a watermark for an individual pixel.
Given p patches, each containing n elements, assume r > 1

2 and p≫ 1. Then, the probability rp of jointly
detecting the watermark across all patches can be approximated by

rp ≈ Φ
(

(r − 1
2 )√p√

r(1− r)

)
.

where Φ(x), the cumulative distribution function of a normal distribution, is a monotonically increasing
function.

We model the detection outcomes across p patches as independent Bernoulli variables with parameter r. By
invoking the Central Limit Theorem, the proportion of correctly detected patches can be approximated by a
Gaussian distribution N

(
r, r(1−r)

p

)
.

This formulation provides a key insight into the aggregation mechanism: the variance scales inversely with the
number of patches. Consequently, provided that the single-patch detection is better than random guessing
(r > 1

2 ), the probability mass rapidly concentrates around the mean as p increases, effectively separating
the distribution from the random guessing baseline. This variance reduction thus boosts the joint detection
probability rp, ensuring robust performance even with weak individual signals, as evidenced in Table 4.

Stealthiness means that the watermark is visually imperceptible and that watermarked and non-watermarked
images remain indistinguishable in distribution. In our setting, this is enforced by preserving the sampling
distribution of the latents during watermark injection. To validate the claim that dispersed watermarks
induce more natural representation distribution, we show in the following proposition that the correlation of
two elements quickly diminish with the patch size n, and the limiting covariance matrix is thus akin to the
one of a multivariate standard normal distribution. (The proof is provided in Appendix B.2.)
Proposition 2 (Stealthiness of the Watermarked Distribution). Let p be the number of patches and n

indicate the number of pixels in a patch. The normalized Bures–Wasserstein (BW) distance d̂BW between the
watermarked sampling distribution and N (0, I) is at most

d̂BW(zT ,N (0, I)) ≤ 2
π
· p− 1
|zT | − 1 .

where |zT | denotes the size of zT .

The proposition above suggests that as long as p ≪ |zT |, the joint distribution of the watermarked latent
representation zT well approximates the i.i.d. standard Gaussian distribution N (0, I) of the non-watermarked
latents. Furthermore, by varying p, we can control the tradeoff between generation quality and robustness
(also empirically validated in Table 4). For instance, in a latent representation of size 512 × 512, setting
p = 64 results in a correlation of approximately 10−4, ensuring that the joint distribution closely follows an
i.i.d. Gaussian.
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Fixed Randomized

Figure 5: Comparison of Random Gaussian watermarking between fixed and randomized patches. Different
colors represent distinct patches. The left plot shows a fixed patch arrangement, while the right plot displays
a randomized patch configuration.

4.4 Channel Selection for Watermarking

To enhance robustness against various attacks, we propose a hybrid strategy that adaptively applies the
"Random Gaussian" and "Gaussian Ring" techniques across channels, building on the shape specifications in
Section 4.2.

Imprinting. To effectively integrate the two methods, we adopt a channel rating strategy to determine the
watermarking technique to apply, specifically by calculating the sensitivity to geometric transformations. For
a channel c (a slight abuse of notation), we compute the magnitude of the gradient w.r.t. to a geometric
transformation loss Lgeo:

gc = ∥∂Lgeo/∂zc
T ∥2 , Lgeo(z0, zrot

0 ) = ∥D(z0)−D(zrot
0 )∥2

2,

where zc
T represents the initial latent representation of channel c, D(z0), D(zrot

0 ) denote the images generated
by zT before and after 90 degree rotation, respectively, and ∥·∥2 denotes the Euclidean norm. Clearly, the
channel with the largest gradient magnitude gc is more sensitive to geometric transformations, and we will
apply Gaussian Ring watermarking to enhance their robustness against geometric attacks. Conversely, for
other channels with smaller gradient magnitudes, we will apply Random Gaussian watermarking to better
handle non-geometric attacks. The full procedure is illustrated in Algorithm 3 of Appendix A.2.

Detection aggregation along channels. During the watermark detection process, we calculate the
accuracy for each channel by evaluating whether the elements of ẑ

(c)
T (a certain channel of the representation

ẑT , an h×w matrix) fall into the specified “green" shape1. The so-called “accuracy” Acc(z(c)
T , wc) for channel

c is calculated as:

Acc(ẑ(c)
T , mc) = 1

Nc

Nc∑
i=1

1{zc
i ∈ Green Region(mc)}

where Nc is the number of watermarked elements in channel c, zc
i is the i-th element of channel c, mc is the

watermark value for channel c, and 1{·} is the indicator function, which equals 1 if the event is true and 0
otherwise. The overall watermark recovery accuracy is determined by aggregating the accuracy across all
channels. To adaptively address varying attack scenarios, we propose the combined watermark accuracy to
select the most robust component:

Acc(m̂) = max
c∈Cm

Acc(ẑ(c)
T , mc)

where Cm is the set of all channels. By detecting both random and ring watermark patterns, even if one
of the watermarks is compromised by a specific attack, the others can still be detected, enhancing overall
robustness. By combining these methods, the total watermark capacity is greatly increased, as the combined
capacity becomes the product of the individual capacities of each watermarking technique.

1In addition to the practical detection based on the accuracy metric, a testing procedure is depicted in Appendix B.3.
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Table 1: TPR@1%FPR under different attacks for Stable Diffusion, showing the effectiveness of our method
over a number of attacks.

Method Clean Rotation JPEG Cr. & Sc. Blurring GauNoise Color Jitter S&PNoise Regeneration Flip Avg
DwtDct 0.909 0.027 0.008 0.092 0.011 0.354 0.126 0.089 0.016 0.023 0.166
DwtDctSvd 1.000 0.011 0.156 0.057 0.538 0.732 0.117 0.021 0.018 0.042 0.269
RivaGan 0.997 0.012 0.756 0.762 0.428 0.541 0.694 0.477 0.025 0.027 0.472
Stable Signature 1.000 0.032 0.713 0.816 0.015 0.624 0.843 0.072 0.011 0.018 0.414
Tree-Ring 1.000 0.477 0.995 0.932 0.999 0.926 0.900 0.987 1.000 1.000 0.922
Gaussian Shading 1.000 0.007 0.999 1.000 1.000 0.999 0.992 0.999 1.000 0.097 0.809
AquaLoRA 1.000 0.013 0.987 0.941 1.000 0.954 0.847 0.693 0.812 0.133 0.738
DiffKGW (Ours) 1.000 0.852 1.000 1.000 1.000 0.996 0.996 1.000 1.000 0.998 0.984

5 Empirical Results

We conduct experiments on two widely-used diffusion scenarios: text-to-image diffusion models and image-to-
image diffusion models, to evaluate the effectiveness and robustness of our watermarking technique across
various attack scenarios. Additionally, we perform ablation studies in Section 5.3 for a deeper analysis of the
method.

5.1 Experimental Setting

Our paper first evaluates the proposed method on text-to-image diffusion models, focusing on Stable Diffusion
(SD) (Rombach et al., 2022) v2.1/2.0/1.4. The generated images have a resolution of 512× 512, with a latent
space of 64× 64× 4. For inference, we use prompts from Stable-Diffusion-Prompt, setting the guidance scale
to 7.5, and generate images over 50 steps using DPMSolver (Lu et al., 2022). The watermark radius r varies
from 5 to 15 in steps of 2. Images are divided into patches of 64 elements each. Given that users often share
generated images without prompts, we perform inversions with an empty prompt and a guidance scale of 1,
using 50 steps of the DDIM method (Song et al., 2020).

We also test our watermarking approach in image-to-image editing using pre-trained image-conditioned
diffusion models. Specifically, we employ instruct-pix2pix (Brooks et al., 2023), a fine-tuned Stable Diffusion
model. Editing tasks use DDIM inversion with an empty prompt and original image, setting the guidance
scale to 1.

For image quality evaluation, we adopt Frechet Inception Distance (FID) (Heusel et al., 2017) and CLIP-
Score (Radford et al., 2021). FID is computed on the COCO2017 validation set, which contains 5,000 images.
CLIP scores are measured between generated images and text prompts for Stable Diffusion, and between
edited images and ground truth descriptions for instruct-pix2pix. We exclude SSIM and PSNR, as they
assess post-hoc modifications, whereas our method manipulates latent representations, aligning with prior
works (Wen et al., 2023; Yang et al., 2024).

For detection, following (Wen et al., 2023; Yang et al., 2024), we compute the true positive rate (TPR) at
a fixed false positive rate (1% FPR). In traceability, we assess identification accuracy across watermark
patterns. AUC and TPR@1%FPR are calculated using 1,000 watermarked and 1,000 unwatermarked images
per run, averaging results over three runs with different random seeds.

5.2 Performance of the Proposed Method

To benchmark the robustness of our watermarking method, we evaluate its performance against widely used
augmentation-based attacks and a generative AI-based attack, Regeneration (Zhao et al., 2023a), which
leverages a diffusion model for regeneration and denoising. We exclude image-to-image translation and
editing methods, as they produce significantly altered images with varying concepts. Additional potential
adversarial threats exist, such as recovering structured watermark patterns from degenerate or lightly edited
images, reusing extracted watermark signals across samples, and overwriting an existing watermark with a
new one. These attacks fall outside the scope of our current benchmark but represent meaningful directions
for future investigation. Details of the attacks are in Appendix A.1, and Table 1 presents the TPR@1%FPR
results. Our DiffKGW watermarking method outperforms Tree-Ring, particularly under rotation (0.852
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Table 2: Performance comparison of different watermarking methods on Stable Diffusion under clean and
adversarial conditions. The metrics are split into two categories: Fidelity and Robustness.

Methods Robustness Fidelity
TPR @1%FPR AUC Accuracy FID (↓) CLIP-ScoreClean Adv. Clean Adv. Clean Adv.

Stable Diffusion - - - - - - 25.23 0.363
DwtDct 0.909 0.166 0.974 0.574 0.950 0.527 25.28 0.364
DwtDctSvd 1.000 0.269 1.000 0.702 1.000 0.691 25.01 0.359
RivaGAN 0.997 0.472 0.999 0.854 0.998 0.802 24.51 0.361
Stable Signature 1.000 0.414 1.000 0.818 1.000 0.751 25.45 0.364
Tree-Ring 1.000 0.922 1.000 0.993 1.000 0.979 25.29 0.363
Gaussian Shading 1.000 0.809 1.000 0.911 1.000 0.864 25.20 0.364
AquaLoRA 1.000 0.738 1.000 0.871 1.000 0.817 25.50 0.363
DiffKGW (Ours) 1.000 0.984 1.000 0.999 1.000 0.994 25.20 0.363

Table 3: Detection TPR with different sampling methods in diffusion models.

Noise Sampling Method
DDIM UniPC PNDM DEIS DPMSolver

Clean 1.000 1.000 1.000 1.000 1.000
Adversarial 0.978 0.972 0.983 0.982 0.984
CLIP-Score 0.363 0.362 0.363 0.363 0.363

vs. 0.477) and noisy conditions like Gaussian noise (0.996 vs. 0.926). While Gaussian Shading excels in
noise robustness (e.g., 1.000 for blurring), it struggles with geometric transformations (0.007 for rotation).
Overall, our method achieves the highest average performance, demonstrating strong resilience against both
geometric and noise-based attacks. Additional results on the instruct-pix2pix model and image-to-image
editing scenarios are in Table 6 (Appendix A.3), while watermark capacity and identification analyses are in
Appendix A.4, further confirming our method’s superiority.

Table 2 shows the average detection performance across various attacks, demonstrating our method’s robustness
and superiority over baselines in resisting adversarial manipulations. In fidelity, it maintains comparable FID
and CLIP-Score values, ensuring minimal impact on image quality. Moreover, its independence from custom
model components enables seamless integration into different diffusion models. Appendix A.7 presents results
on SD v1.4, v2.0, and Dreambooth (Ruiz et al., 2023), further validating its effectiveness.

Our study focuses on watermarking methods that are integrated into the diffusion generation process, where
watermark signals are embedded directly into the latent noise prior to denoising. This paradigm fundamentally
differs from post-processing watermarking techniques that modify already-generated images (Lu et al.) and
from optimization-based approaches (Zhang et al., 2024). Accordingly, we do not include direct comparisons.

5.3 Ablation Studies

We conduct extensive ablation studies on several key hyperparameters of our proposed method to demonstrate
the effectiveness of our method. To validate the generalization of our approach, we evaluated five commonly
used sampling methods in diffusion: DDIM (Song et al., 2020), UniPC (Zhao et al., 2024a), PNDM (Liu
et al., 2022), DEIS (Zhang & Chen, 2022), and DPMSolver (Lu et al., 2022). As shown in Table 3, with our
proposed watermarking technique, all sampling methods demonstrate excellent and comparable performance,
particularly in clean conditions where all methods achieved a perfect detection rate. Under adversarial
noise, DPMSolver shows a marginally better detection rate, but overall, all sampling methods maintain high
robustness.

Table 4 shows that larger patch sizes improve robustness against adversarial attacks but reduce image quality,
as reflected by a lower CLIP-Score. For ring radius, placing the ring near the center (“0-5” in Table 5)
degrades generation quality by embedding key structural and semantic information, while a medium radius
(“5-15”) provides the best balance between rotation robustness and image quality.
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Table 4: Ablation with different patch sizes.

Patch Size 4 16 64 256
None 0.993 1.000 1.000 1.000
Adversarial 0.757 0.924 0.984 0.986
CLIP-Score 0.364 0.363 0.363 0.359

Table 5: Ablation with different ring radii.

Ring Radius 0-5 5-10 0-10 5-15 10-15
None 1.000 1.000 1.000 1.000 1.000
Rotation 0.512 0.643 0.828 0.852 0.767
CLIP-Score 0.361 0.363 0.359 0.363 0.363

(a) Channel-wise analysis. (b) Win/Tie/Loss comparison.

Figure 6: Left: Quantitative comparison of accuracy and normalized gradient across four channels. Right:
Win/Tie/Loss statistics between watermarked and non-watermarked outputs on the Stable-Diffusion and
MS-COCO datasets. “Win” indicates higher performance for watermarked images, “Tie” similar performance,
and “Loss” higher for non-watermarked.

For watermark channels, the experimental findings in Figure 6a show substantial variation in performance
across different channels, with Channel 2 achieving the highest accuracy. Notably, the computed gradient
values align closely with the robustness accuracy for each channel, indicating that gradient strength is a
reliable indicator of channel performance. This suggests that channels with stronger gradients are better
suited for embedding the Gaussian Ring Watermark, providing a useful guideline for selecting the optimal
channel for watermarking to enhance specific robustness.

Due to space constraints, ablations on Gaussian Ring and Random Gaussian watermarks are in Appendix A.5,
and analyses on inversion steps, inference steps, and multi-bit encoding are in Appendix A.6, all demonstrating
the effectiveness of our method.

5.4 Analysis on Channels

Additionally, we compare the CLIP-Scores of the non-watermarked and watermarked results for each input
prompt from the Stable-Diffusion and MS-COCO datasets. If the CLIP-Score difference is less than 0.01, it
is considered a tie; otherwise, it is classified as a win for either the watermarked or non-watermarked result.
The comparative results are presented in Figure 6b.

From the table, we observe that the watermarked images sometimes outperform and other times underperform
the non-watermarked images, with no consistent trend favoring one over the other (similar win and loss counts
with win rate≈0.5). This demonstrates the robustness and effectiveness of our watermarking method, as it
preserves the generation quality while embedding the watermark without introducing systematic degradation
or enhancement.
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Non-watermarked Watermarked

Wild turkeys on 
top of the dried 
pasture 

A blue train on 
some train tracks 
about to go 
under a bridge 

(a) Text-to-image Diffusion
Make the pathway be made of gold

Make it a painting

Original Non-watermarked Watermarked

(b) Image-to-image Diffusion

Figure 7: Visualization of both the watermarked and non-watermarked generated images in different scenarios.
For image-to-image editing, we also include the original images. More visualizations are shown in Appendix C.

5.5 Visualization

Figure 7 visualizes watermarked and non-watermarked diffusion-generated images, showing that our method
preserves semantic information and high visual quality. In text-to-image diffusion, watermarked images
remain visually similar to non-watermarked ones while retaining intended semantics. In image-to-image
diffusion, they exhibit even greater similarity to the original and non-watermarked images due to additional
guidance from the input. These results confirm that our method effectively embeds the watermark while
maintaining image integrity. Additional visualizations are in Appendix C.

6 Related Works

In this section, we comprehensively review the related works on watermarking images and recent extensions
to diffusion models.

Watermarking Image. Digital watermarking (Van Schyndel et al., 1994) embeds traceable identification
information in carrier data for copyright protection and content authentication. Traditional image water-
marking techniques, often applied in post-processing, focus on frequency domain methods (Cox et al., 2007;
Al-Haj, 2007; Hamidi et al., 2018; Kundur & Hatzinakos, 1997; Lee et al., 2007; Navas et al., 2008) to enhance
robustness. For instance, DwtDctSvd (Cox et al., 2007) combines Discrete Wavelet Transform, Discrete Cosine
Transform, and Singular Value Decomposition for watermark embedding. More recently, deep learning-based
approaches (Zhu et al., 2018; Tancik et al., 2020; Fernandez et al., 2022; Zhang et al., 2019; Hayes & Danezis,
2017) like RivaGAN (Zhang et al., 2019) leverage neural networks to improve watermarking, employing
adversarial networks for both embedding and extraction. Despite advancements, post-hoc watermarking
often introduces visible noise and is vulnerable to attacks like cropping and compression (Fernandez et al.,
2023), as it is applied to the final image, making the watermark prone to distortion or removal.

Watermarking Diffusion Models. With the rise of generative models, particularly diffusion models,
watermarking AI-generated content—or the models themselves—has become increasingly important. Yu
et al. (2021) and Zhao et al. (2023b) proposed embedding watermarks into training datasets so that models
inherently generate watermarked content. However, this approach may pose practical issues for large-scale
diffusion models trained on vast datasets. To address this, researchers have explored embedding watermarks
during the generation process. For example, Fernandez et al. (2023) and Feng et al. (2024) fine-tuned model
weights to modify latent representations, with Stable Signature (Fernandez et al., 2023) fine-tuning LDM
decoders to embed hidden watermarks in generated images—albeit at the cost of extensive training and
various data augmentations.

Other approaches, like Tree-ring watermark (Wen et al., 2023), modify the initial noise in the sampling
process, requiring deterministic samplers like DDIM (Song et al., 2020) for watermark extraction through
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inversion. Yang et al. (2024) proposes a distribution preserving method to adjusts the initial noise naturally,
improving robustness against noise additions. However, Wen et al. (2023) is less resilient to noise and cropping
attacks, while Yang et al. (2024) remains sensitive to geometric transformations. Despite these efforts, the
fundamental principles behind effective watermarking and the connections among different methods remain
poorly understood. Inspired by these works, we identify key design dimensions for embedding watermarks in
the latent space, providing insights into diffusion watermarking techniques.

7 Conclusion

In this paper, we adapt the principle of language watermarking to image diffusion and introduce a unified
framework to dissect watermarking approaches for diffusion models along three distinct dimensions. By
addressing vision-specific challenges in shape and channel dimensions, we innovatively instantiate an effective
holistic model under this framework, maintaining high fidelity, and ensuring robust watermarking against
various attacks. Extensive evaluations of text-to-image applications show our model outperforms state-of-
the-art methods. We further validate its effectiveness on image-to-image diffusion models, highlighting a
substantial advancement in digital watermarking.
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A More on experiments

The code and model weights will be open-sourced after the review procedure.

A.1 Implementation Details

The attacks implemented in the paper include Gaussian blurring with a filter size of 4, Gaussian noise with
a standard deviation of 0.05, JPEG compression with a ratio of 25%, and salt-and-pepper noise with a
probability of 0.05. Additionally, we evaluate against brightness adjustments where the factor is set to 6,
random cropping and resizing with a 75% ratio, rotation by 75 degrees, and horizontal and vertical flips
with probabilities of 0.5 each. We also incorporate a generative model-based attack, DeNoise, as introduced
by Zhao et al. (2023a), which leverages a diffusion model to denoise the output, aiming to remove any
potential watermark. To be specific, their method first encodes the watermarked image into the model’s
latent space, then applies 50 forward diffusion steps, consistent with our diffusion setup, to obtain a noised
latent representation. It subsequently runs the reverse denoising trajectory to recover a cleaner latent, which
is finally decoded back into pixel space to produce an image intended to suppress or eliminate the embedded
watermark.

For the Gaussian Ring Watermark, the watermark radius r ranges from 5 to 15, with an interval of 2.
For the Random Gaussian Watermark, we divide the images into patches, with each patch containing 64
elements. Furthermore, to enhance the randomness and security of the watermark, we employ a stream
key, a cryptographic key used in encryption algorithms to generate a sequence of pseudo-random values.
Following Yang et al. (2024), we employ a stream key to encrypt the watermark, which consists of binary
values (0/1), into a randomized version m using an encryption method like ChaCha20 (Bernstein et al.,
2008). The encrypted watermark W , now uniformly distributed, avoids detectable artifacts while maintaining
alignment with the natural data distribution.

A.2 Pseudo Code of Proposed DiffKGW

In this subsection, we illustrate the pseudo-code of the algorithms in our proposed DiffKGW framework.

Algorithm 1 Gaussian Ring Watermarking (Channel c)

Require: z
(c)
T ∈ Rh×w, ring boundaries {r0, r1, . . . , rK}, pre-randomized watermark bits {b1, b2, . . . , bK}

1: for each pixel (i, j) in z
(c)
T do

2: dist←
√

(i− h/2)2 + (j − w/2)2

3: for k = 1 to K do
4: if rk−1 ≤ dist < rk then
5: m← bk ▷ Retrieve watermark bit for ring k

6: z
(c)
T (i, j)← TruncatedGaussian(m) Eq. (1)

7: end if
8: end for
9: end for

10: return z
(c)
T

A.3 Empirical Results on Instruct-pix2pix

The experimental findings in Table 6 demonstrate that, even in the more challenging image-to-image diffusion
scenarios, our method maintains high robustness across various attack types, with an average AUC of 0.927.
In contrast, the performance of the Tree-Ring method significantly declines, possibly because it sets selected
values to constants, heavily relying on inversion precision. In image-to-image settings, inversion is more
difficult due to the absence of multiple inputs including the conditional editing prompt and input image
during the inversion process. This highlights the strength of our method, which can achieve robustness even
when inversion accuracy is compromised, further underscoring its effectiveness in complex scenarios.
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Algorithm 2 Gaussian Random Watermarking (Channel c)

Require: z
(c)
T ∈ Rh×w, patch size p, pre-randomized watermark matrix W ∈ {0, 1}(h/p)×(w/p)

1: Partition z
(c)
T into patches of size p× p

2: for each patch k do
3: for each pixel (ip, jp) in the corresponding patch do
4: m←W (ip, jp) ▷ Retrieve watermark bit
5: P (k)(ip, jp)← TruncatedGaussian(m) Eq. (1)
6: end for
7: end for
8: Combine all patches {P (1), P (2), . . . , P (p×p)} to reconstruct z

(c)
T

9: return z
(c)
T

Algorithm 3 DiffKGW
Require: zT ∈ Rh×w×C , Decoder D(·), Rotation function rot(·), Lgeo(z0, zrot0) = ∥D(z0)−D(zrot0)∥2

2
1: for c = 1 to C do
2: Extract channel z

(c)
T

3: I ← D(zT ), Irot ← D(rot(zT ))

4: Compute gradient gc ←

∥∥∥∥∥∂Lgeo

∂z
(c)
T

∥∥∥∥∥
2

5: end for
6: c∗ ← arg maxc gc

7: for c = 1 to C do
8: if c = c∗ then
9: Apply Gaussian Ring (Alg. 1) on z

(c)
T

10: else
11: Apply Gaussian Random (Alg. 2) on z

(c)
T

12: end if
13: end for
14: return Watermarked latent ẑT

A.4 Watermark Capacity and Identification

The experimental results in Table 7 demonstrate the superior capacity and robustness of our watermarking
method compared to the Tree-Ring approach. In our method, two distinct watermarks are injected into
different channels, each carrying a and b bits of information. This results in 2a and 2b possible patterns for each
channel, and when combined, the total capacity becomes 2a+b. This significantly increases the capacity and
enhances the distinguishability of the watermarks compared to constant value-based approaches like Tree-Ring.
The results show that across various use cases and watermark patterns, our method consistently achieves
high identification accuracy, while the Tree-Ring approach fails, especially under adversarial conditions.
These findings underscore the effectiveness of our method in maintaining both traceability and identification
accuracy, even in challenging adversarial scenarios.

A.5 Ablation Study on Random Gaussian and Gaussian Ring

The experimental results in the Table 8 show that both the Random Gaussian and Gaussian Ring watermark
patterns are critical to the success of our method. The Random Gaussian watermark demonstrates greater
robustness against noise-based attacks, as indicated by the high performance in noise-related tests (e.g.,
Salt & Pepper Noise: 0.996), while the Gaussian Ring watermark shows superior robustness to geometric
transformations, such as rotation (0.011 for without Gaussian Ring, compared to 0.841 with Gaussian Ring).
Despite this, both patterns perform well individually, achieving strong results across various attack scenarios.
The combination of the two watermarks in our method results in the highest overall performance (average
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Table 6: AUC under each Attack for Instruct-pix2pix image-to-image diffusion, showing the effectiveness of
our method over a number of attacks.

Method Clean Rotation JPEG Cr. & Sc. Blurring GauNoise Color Jitter S&PNoise DeNoise Flip Avg
DwtDct 0.542 0.301 0.322 0.288 0.315 0.274 0.265 0.292 0.268 0.279 0.315
DwtDctSvd 0.603 0.312 0.411 0.355 0.428 0.362 0.344 0.305 0.318 0.293 0.373
RivaGan 0.712 0.366 0.557 0.521 0.498 0.476 0.505 0.422 0.388 0.351 0.480
Stable Signature 0.734 0.401 0.612 0.586 0.445 0.512 0.587 0.355 0.392 0.336 0.496
Tree-Ring 0.751 0.586 0.689 0.653 0.695 0.625 0.615 0.673 0.602 0.605 0.649
Gaussian Shading 0.963 0.532 0.961 0.924 0.943 0.912 0.942 0.912 0.916 0.525 0.853
AquaLoRA 0.781 0.452 0.703 0.631 0.702 0.655 0.598 0.474 0.501 0.402 0.590
Ours 0.988 0.830 0.976 0.947 0.970 0.914 0.946 0.920 0.942 0.841 0.927

Table 7: Traceability and identification accuracy across 32 distinct watermark patterns.

Method Clean Rotation JPEG Cr. & Sc. Color Jitter GauNoise Avg
Tree-Ring 0.435 0.012 0.401 0.045 0.412 0.505 0.302
Ours 1.000 0.828 0.992 0.984 0.980 0.982 0.961

0.984), demonstrating that these patterns are not only effective but also complementary, enhancing the overall
robustness when used together.

A.6 Ablation Study on Inference and Inversion Steps.

The experimental findings in Table 10 demonstrate that different inversion steps consistently perform well in
terms of detection accuracy, with minimal loss even when there is a mismatch between inference and inversion
steps. In real-world scenarios, the exact inference step is often unknown, which can result in this mismatch.
However, the table shows that detection performance remains robust across various combinations of steps.
Given the efficiency of existing samplers and the optimal performance observed with 50 inversion steps, we
select 50 steps as a balanced trade-off between accuracy and computational efficiency.

Encoding multiple k bits involves dividing the distribution into 2k regions, designating one as the green region
while treating all others as red. The detection performance remains comparable, with an increase in encoded
bits generally enhancing detection. However, encoding too many bits per element may may negatively impact
overall image quality.

A.7 Performance on Different Diffusion Models

Our method is independent of custom model components, allowing seamless integration into various diffusion
models (DMs). In the paper, we evaluate our method on InstructPix2Pix and Stable Diffusion (SD) V2.1.
Additionally, we further validate its generalizability on SD V1.4, V2.0, and DreamBooth below, covering
different architectures, training data, and objectives. Our method shows consistent robustness.

A.8 Runtime Analysis

As shown in Table 11, the actual watermarking cost is minimal: Tree-Ring is the fastest, but our method also
requires only 0.028 s for embedding and 0.0017 s for detection. In contrast, diffusion and inversion take over
a second, meaning our watermark introduces minimal overhead to the generation pipeline.

A.9 Robustness Evaluation

As shown in Figure 8, increasing the intensity of blur or noise progressively reduces the watermark detection
rate, which is expected because strong corruptions severely distort the image itself. Even under extremely
destructive conditions such as when 80% of the pixels are replaced by noise, our method still maintains a
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Table 8: Comparison of detection performance (TPR@1%FPR) across various methods under different attack
scenarios, including Random Gaussian removal, Gaussian Ring removal, and the proposed method (Ours).

Method Clean Rotation JPEG Cr. & Sc. Blurring GauNoise Color Jitter S&PNoise DeNoise Flip Avg
w/o Random Gaussian 1.000 0.841 0.966 0.954 0.937 0.923 0.982 0.984 0.931 0.997 0.952
w/o Gaussian Ring 1.000 0.011 1.000 1.000 0.986 0.994 0.988 0.996 1.000 0.015 0.799
Ours 1.000 0.852 1.000 1.000 1.000 0.996 0.996 1.000 1.000 0.998 0.984

Table 9: Detection TPR@1%FPR with different inversion and inference steps.

Inversion Step
Inference Step 10 25 50 100
10 0.975 0.976 0.973 0.970
25 0.968 0.978 0.981 0.981
50 0.965 0.967 0.984 0.982
100 0.965 0.966 0.977 0.984

reasonably high detection accuracy. This demonstrates that the watermark signal remains resilient even when
the visual content is heavily degraded.

B Proofs omitted in the main text

B.1 Proof of Lemma 1

Proof. Let Z be a random variable representing the value of an element in the latent representation. The pixel
Z is sampled based on a watermark bit B ∈ {0, 1}, which determines the region of the Gaussian distribution
from which Z is drawn.

The conditional distribution of Z given B is:

pZ|B(ze
T |w) =

{
2ϕ(ze

T ), if ze
T ∈ R(w),

0, otherwise,

where ϕ(x) = 1√
2π

e−x2/2 is the standard normal probability density function, and R(w) is defined as:

R(w) =
{

(−∞, 0], if w = 0,

(0,∞), if w = 1.

The watermark bits B are assumed to be independent and uniformly random, i.e., P (B = 0) = P (B = 1) = 1
2.

The marginal distribution of Z is then:

pZ(ze
T ) =

∑
w∈{0,1}

pZ|B(ze
T |w)P (B = w)

= 1
2 · 2ϕ(ze

T )1ze
T

≤0 + 1
2 · 2ϕ(ze

T )1ze
T

>0

= ϕ(ze
T )
[
1ze

T
≤0 + 1ze

T
>0
]

= ϕ(ze
T ).

Therefore, Z marginally follows the standard normal distribution N (0, 1).
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Table 10: Detection TPR@1%FPR with different encoding watermark bits per element.

# Bits 1 2 3
None 1.000 1.000 1.000
Adversarial 0.984 0.985 0.987
CLIP-Score 0.363 0.363 0.360

Model SD v1.4 SD v2.0 DreamBooth
Clean Adv. CLIP-Score Clean Adv. CLIP-Score Clean Adv. CLIP-Score

Base Model - - 0.349 - - 0.358 - - 0.352
+Gaussian Shading 1.000 0.788 0.348 1.000 0.814 0.358 1.000 0.763 0.352
+Ours 1.000 0.976 0.349 1.000 0.987 0.358 1.000 0.969 0.353

We further provide the proof for the generalized multi-bit setting as follows.

Proof. Let B = (b1, . . . , bm) ∈ {0, 1}m be independent, uniform watermark bits, and define

k(B) =
m∑

j=1
bj · 2m−j ∈ {0, . . . , 2m − 1},

We define k(B) as the integer index corresponding to the binary vector B, establishing a one-to-one mapping
between B and its interval Rk(B). Partition k into equiprobable intervals

Rk =
(

Φ−1
(

k

2m

)
, Φ−1

(
k + 1
2m

))
, k = 0, 1, . . . , 2m − 1,

so that Pr[Z ∈ Rk] = 2−m, where Φ and Φ−1 denote the standard-normal CDF and its inverse.

Define the conditional density of a latent element Z as

pZ|B(z | b) =

2m · ϕ(z), if z ∈ Rk(b),

0, otherwise,

where ϕ(z) = 1√
2π

e−z2/2.

Regardless of m, the marginal distribution of Z remains standard normal:

Z ∼ N (0, 1).

By marginalizing over B,

pZ(ze
T ) =

∑
b∈{0,1}m

pZ|B(ze
T | b) P (B = b)

=
2m−1∑
k=0

2m ϕ(ze
T ) 1Rk

(ze
T ) · 1

2m

= ϕ(ze
T )

2m−1∑
k=0

1Rk
(ze

T )

= ϕ(ze
T ),

since {Rk} forms a disjoint cover of R, the sum of indicator functions equals 1.
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Table 11: Runtime comparison among different watermarking methods.

Method Embed Detect
Diffusion Model 1.84s (Diffusion) 1.25s (Inversion)
Tree-Ring 0.0060s 0.0008s
Gaussian Shading 1.57s 0.0021s
Ours 0.0280s 0.0017s

(a) Gaussian Blur attack. (b) Salt-and-Pepper noise attack.

Figure 8: Performance degradation under increasing attack strength. Left: AUC, Accuracy, and
TPR@1%FPR curves under Gaussian Blur with increasing blur radius. Right: AUC, Accuracy, and
TPR@1%FPR curves under Salt-and-Pepper noise with increasing noise probability.

B.2 Proof of Proposition 2

Proof. We first show that the correlation between any two different elements zijk
T and zi′j′k′

T in the tensor is
given by

Corr(zijk
T , zi′j′k′

T ) = 2
π
· p− 1
|zT | − 1 .

Consider two elements X and Y within a latent representation divided into p patches, each containing n
pixels, totaling |zT | = pn pixels. Pixels within the same patch share a common watermark bit W , while those
in different patches have independent watermark bits.

Cov(X, Y ) = E[XY ]− E[X]E[Y ].

Given E[X] = E[Y ] = 0, this simplifies to:

Cov(X, Y ) = E[XY ].

When X and Y are in the same position across different patches, they share the same watermark bit W .
Given W , X and Y are independent and follow a Half-Normal Distribution with variance σ2 = 1.

The probability density function (PDF) of a Half-Normal Distribution with variance σ2 = 1 is

fY (y) =
√

2
π

exp
(
−y2

2

)
, y ≥ 0.

The expectation E[Y ] is calculated as
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E[Y |W = 1] =
∫ ∞

0
y · fY (y) dy

=
√

2
π

∫ ∞

0

√
2t · e−t · 1√

2t
dt (where t = y2

2 )

=
√

2
π

.

Similarly, for W = 0,

E[Y |W = 0] = −
√

2
π

.

Since X and Y are independent given W ,

E[XY |W ] = E[X|W ]E[Y |W ] =
(√

2
π

)2

= 2
π

.

When X and Y are in different positions across different patches, their watermark bits WX and WY are
independent. Therefore,

E[XY |Different Positions] = E[X]E[Y ] = 0.

The probability that two randomly selected pixels are in the same position across different patches is

Ps = #Same Position
#Total = p− 1

np− 1

Combining the cases, we have

E[XY ] = Ps ·
2
π

+ (1− Ps) · 0 = 2
π
· p− 1

np− 1 .

Given that Var(X) = Var(Y ) = 1, the correlation ρ is:

ρ = Corr(X, Y ) = Cov(X, Y )√
Var(X)Var(Y )

= 2
π
· p− 1

np− 1 .

Furthermore, we prove the normalized Bures–Wasserstein (BW) distance d̂BW between the watermarked
sampling distribution and N (0, I) is at most

d̂BW(zT ,N (0, I)) ≤ ρ = 2
π
· p− 1
|zT | − 1 .

Let Σ be the covariance matrix of a centered Gaussian latent distribution with correlation parameter ρ as
defined in our paper. Then the normalized Bures–Wasserstein distance d̂BW between this distribution and
the standard normal N (0, Inp) satisfies

d̂BW = BW 2

np
< ρ,

i.e., the normalized Bures–Wasserstein distance (BW2) is upper bounded by the correlation ρ.

BW 2 = Tr(Σ) + Tr(Inp)− 2Tr(Σ1/2)
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is the squared Bures–Wasserstein distance between a Gaussian distribution with covariance Σ and the
standard normal N (0, Inp). Consider a spiked covariance structure

Σ = (1− ρ)Inp + ρ11⊤, 1 = (1, . . . , 1)⊤ ∈ Rnp,

so that Tr(Σ) = np, which is a constant denotes the size of zT .

Factor out (1− ρ):

Σ = (1− ρ)
(
Inp + uu⊤), u =

√
ρ

1− ρ
1,

where u⊤u = ρ
1−ρ np = Θ(np).

For a rank-1 perturbation S = I + uu⊤, a rank-1 update admits a closed-form square root:

S1/2 = I +
√

1 + u⊤u− 1
u⊤u

uu⊤.

Hence

Σ1/2 =
√

1− ρInp +O((np)−1)11⊤,

and its trace is

Tr(Σ1/2) =
√

1− ρnp +O(1).

Plugging this into the BW formula gives

BW 2 = np + np− 2
(√

1− ρnp +O(1)
)

= 2np(1−
√

1− ρ)−O(1).

Using the identity

1−
√

1− ρ = ρ

1 +
√

1− ρ
,

we obtain

BW 2 = 2np
ρ

1 +
√

1− ρ
−O(1) < npρ.

Thus, for large np,

BW 2

np
< ρ ,

meaning the normalized Bures–Wasserstein distance is bounded by ρ.
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B.3 Illustration of the Statistical Test

In this work, our primary focus is on evaluating the actual performance of the watermarking method.
However, a statistical analysis can also be derived. Let m ∈ {0, 1}k represent a k-bit (independent) watermark
embedded in the model. We extract the message m′ from an image x and compare it with m. As outlined in
previous works, the detection test is based on the number of matching bits, A(m, m′). Specifically, if

A(m, m′) ≥ τ where τ ∈ {0, . . . , k},

then the image is flagged. This approach provides a level of robustness against imperfections in the
watermarking process.

Formally, we test the statistical hypothesis H1: "image x was generated by the watermarked model" against
the null hypothesis H0: "image x was not generated by the watermarked model." Under H0 (i.e., for non-
watermarked images), we assume that the bits m′

1, . . . , m′
k are independent and identically distributed (i.i.d.)

Bernoulli random variables with a parameter of 0.5. Consequently, A(m, m′) follows a binomial distribution
with parameters (k, 0.5). This assumption has been experimentally validated.

The theoretical FPR is defined as the probability that A(m, m′) exceeds the threshold τ . It is calculated
using the CDF of the binomial distribution. A closed-form expression can be derived using the regularized
incomplete beta function Ix(α; β):

FPR(τ) = P(M > τ |H0) = I1/2(τ + 1, k − τ).

C More on Visualization

C.1 More Generation Results

In this section, we provide additional generation results to illustrate that our watermarking method maintains
comparable generation quality. Results for Stable-Diffusion prompts are presented in Table 12 and Table 13,
while generation results for MS-COCO captions, including the textual prompts, generated images, and
corresponding realistic images from the MS-COCO dataset, are shown in Table 14 and Table 15.

All generated images effectively capture the information conveyed by the textual prompts. In some cases,
the watermarked images show slight improvements in quality (e.g., the 1st prompt from Stable-Diffusion),
while others exhibit minor degradation (e.g., the 2nd prompt from MS-COCO), which can be attributed to
the inherent randomness in the input Gaussian representation. These examples illustrate the robustness
of our watermarking approach, as the visual quality of the generated images remains consistent, and the
watermarking process does not interfere with the generation fidelity.

C.2 Failed Examples

We report in Table 16 the cases with the largest CLIP-Score reduction when compared to their non-
watermarked counterparts. These examples represent the worst deviations observed in our evaluation and
were selected specifically because they exhibit the largest semantic drift under watermark injection. They
primarily occur under prompts that involve extreme lighting, heavy render-like effects, or unusually complex
artistic constraints. These conditions make both inversion and generation more unstable, which amplifies
small perturbations introduced by watermarking. Even in these cases, the semantic content of the prompt
is generally preserved, but fine-grained structures or lighting consistency may deviate. Understanding and
mitigating these extreme cases can be an interesting direction for future work.
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D Broader Impact Statement and Limitations

Broader Impact Statement. Our work aims to enhance the safety and accountability of diffusion-based
generative models by enabling reliable watermarking. This helps detect AI-generated content, prevent misuse,
and promote responsible deployment in real-world applications. DiffKGW does not encode any user-specific
information, ensuring that it cannot facilitate user-level tracking. While the approach improves robustness
in both text-to-image and image-to-image settings, we also acknowledge that image-to-image editing may
introduce ambiguity. We have highlighted this limitation and believe it represents an interesting direction for
future research.

Limitations. Our method primarily focuses on robustness against spatial perturbations (e.g., cropping,
rotation) and common post-processing operations. However, it may be less effective under extreme distribution
shifts or adversarial removal attacks specifically crafted to disrupt the frequency-domain signal used in
watermarking. Additionally, our detection framework assumes access to a partial or full reverse diffusion
process, which may not always be feasible in real-world scenarios with closed-source models.

E GenAI Usage Disclosure

During the preparation of this manuscript, we made controlled use of large language models (LLMs),
specifically ChatGPT, as an auxiliary writing tool. The LLM was used solely for stylistic refinement, such as
improving the fluency, grammar, and readability of paragraphs originally drafted by the authors. All scientific
content, including the conceptual development, methodology, experimental design, and main narrative of the
paper, was fully conceived, written, and validated by the authors without reliance on LLMs. Therefore, the
LLMs served exclusively in a supportive editing role.
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Prompt Non-watermarked Watermarked
a portrait of a girl skull
face, marilyn monroe, in

the style of artgerm,
charlie bowater, atey

ghailan and mike mignola,
vibrant colors and hard
shadows and strong rim
light, plain background,

comic cover art, trending
on artstation

a very beautiful anime
cute girl, full body, long

wavy blond hair, sky blue
eyes, full round face, short
smile, fancy top, miniskirt,
front view, medium shot,
mid-shot, laying in bed,

highly detailed, cinematic
wallpaper by Stanley

Artgerm Lau
overgrown foliage

overtaking massive
japanese temples,

underwater environment,
borealis, scenery,

professional,
award-winning, trending

on artstation, hyper
detailed, realistic,

beautiful, emotional,
shiny, golden, picture

a high detail photograph
of manhattan after being
destroyed by an alien race,
building, avenue, urban
architecture, americana
architecture, concrete

architecture, paved roads,
by thomas kinkade

trending on artstation,
photorealistic, wild
vegetation, utopian,

futuristic, blade runner
digital detailed portrait of

anthromorphic female
hyena, in style of zootopia,
fursona, furry, furaffinity,
4 k, deviantart, wearing
astronaut outfit, in style

of disney zootopia,
floating in space, space

background, in deep space,
dark background, hyena

fursona, cyberpunk,
female, detailed face, style

of artgerm

Table 12: Stable-Diffusion Prompts with corresponding non-watermarked and watermarked images. All images
well capture the textual prompt information. Some watermarked images demonstrate slight improvements
(e.g., the 5th) compared to the non-watermarked versions, while some show minor degradation (e.g., the 4th),
attributed to the randomness inherent in the input Gaussian representation.
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Prompt Non-watermarked Watermarked

movie poster, game about
deep caves and void

monsters, cinematic light,
clean linework, finely

detailed, 4 k, trending on
artstation, concept art by

stanley lau

a simple micro-service
deployed to a public cloud,

security, attack vector,
trending on Artstation,
painting by Jules Julien,
Leslie David and Lisa

Frank, muted colors with
minimalism

symmetry!! portrait of a
female sorcerer, dark

fantasy, intricate, elegant,
highly detailed, my

rendition, digital painting,
artstation, concept art,
smooth, sharp focus,
illustration, art by
artgerm and greg

rutkowski and alphonse
mucha and huang

guangjian and gil elvgren
and sachin teng

pastel landscape of an
anime field. clean sharp
digital art, environment

concept art, by rossdraws,
ghibli, breath of the wild,

greg rutkowski

a tiny worlds by greg
rutkowski, sung choi,
mitchell mohrhauser,

maciej kuciara, johnson
ting, maxim verehin,

peter konig, bloodborne, 8
k photorealistic, cinematic
lighting, hd, high details,

dramatic, dark
atmosphere, trending on

artstation

Table 13: Stable-Diffusion Prompts with corresponding non-watermarked and watermarked images. All images
well capture the textual prompt information. Some watermarked images demonstrate slight improvements
(e.g., the 2nd) compared to the non-watermarked versions, while some show minor degradation (e.g., the
3rd), attributed to the randomness inherent in the input Gaussian representation.28
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Prompt Realistic Non-watermarked Watermarked

Two bear cubs are playing
together in water

A boat is on calm water
by a tree

A bowl full of
marshmallows, chocolate,
and other delicious treats

A cat is lying covered in
bed with white sheets

A cute little teddy bear
on a mantle near a

vintage photo

A dog that is laying down
on a bed

Table 14: MS-COCO Captions with corresponding realistic, non-watermarked, and watermarked images.
All generated images capture the textual prompt information well. Some watermarked images demonstrate
slight improvements (e.g., the 4-6th) compared to the non-watermarked versions, while some show minor
degradation (e.g., the 1st), attributed to the randomness inherent in the input Gaussian representation.
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Prompt Realistic Non-watermarked Watermarked

A quiet city street shows
buildings, cars, and people

A person on a horse with
large snow capped
mountains in the

background

A living room with a
white sofa and a gray rug

A person riding skis on a
snowy slope

A plate of food with a
fried egg and colorful

vegetables

There are two green small
boats in the woods

Table 15: MS-COCO Captions with corresponding realistic, non-watermarked, and watermarked images. All
generated images capture the textual prompt information well. Some watermarked images demonstrate slight
improvements (e.g., the 1st) compared to the non-watermarked versions, while some show minor degradation
(e.g., the 2nd), attributed to the randomness inherent in the input Gaussian representation.
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Prompt Non-watermarked Watermarked
profile portrait, helmet

tiger cyberpunk made of
pink lava and fire design
by mark brooks and brad
kunkle detailed, aurora
digital package, profile

portrait, cyberpunk
fashion, realistic shaded
perfect face, fine details,
very dark environment,

misty atmosphere,
closeup, d & d, fantasy,
intricate, elegant, highly
detailed, digital painting,
artstation, concept art,

matte, sharp focus,
illustration, hearthstone

a lighthouse in space,
meteors, air shot, elegant,
digital painting, concept
art, smooth, sharp focus,

illustration, from
StarCraft by Ruan Jia

and Mandy Jurgens and
Artgerm and

William-Adolphe
Bouguerea

portrait art of nicole
aniston 8 k ultra realistic,

lens flare, atmosphere,
glow, detailed, intricate,
full of colour, cinematic

lighting, trending on
artstation, 4 k,

hyperrealistic, focused,
extreme details, unreal

engine 5, cinematic,
masterpiece

Table 16: Failure cases under highly stylized prompts. These cases typically involve extreme lighting, cinematic
rendering, or heavy stylistic constraints, where both inversion and generation become unstable.
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