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Introduction

* Recent advances of deep reinforcement learning (DRL) has shown
promises in solving NP-hard combinatorial optimization (CO) problems
without manual injection of domain-specific expert knowledge.

 However, most DRL solvers can only scale to graphs with up to
hundreds of nodes.

* We address the scalability challenge by proposing DIMES
(Dlfferentiable MEta Solver).

* We introduce continuous heatmaps to compactly represent
feasible solutions.

* We employ meta-learning over problem instances to capture
the common nature across the instances.

* DIMES can scale to graphs with up to 10,000 nodes.

Formal Definitions

« Given a problem instance s, the goal is finding an optimal solution f;* from the feasible
solution space F; to minimize the cost function c: F; — R:

[ = argmin c,(f) .
fE€Fs

« Solutions are encoded as 0/1 vectors f € {0,1}/%s!, where V, denotes the set of
variables for the problem instance s.

« To learn the solution differentiably, we introduce a continuous vector 6 € Rs! (called
a heatmap) to parameterize a probability distribution py over feasible solution space
F:

po(f |s) < exp(Tiey, fi - 6:) fe%.
*  Optimize 6 by minimizing the expected cost £,,(8|s) = Ef.p,[cs(f)] over py:

65 = argmin Ef_,, [cs(f)].
HeRIVsl

subject to

Problem Definitions

Traveling Salesman Problem (TSP): Maximum Independent Set (MIS):

* Feasible solutions F; are tours, which
visit each node exactly once and
return to the start node at the end.

Feasible solutions F; are independent node
subsets, in which nodes have no edges to
each other.

» The cost ¢, is the sum of edge lengths
in the tour.

The cost ¢, is the negation of the size of
the independent subset.

» Variables V; corresponds to edges,
where f; ; = 1 means edge (i,)) isin
the tour.

Variables V; corresponds to nodes, where
fi = 1 means node i is in the independent
subset.
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F, of a 5-node TSP instance F, of a 5-node MIS instance

Gradient-based Optimization

« Since sampling from py is inefficient, we propose to design an auxiliary distribution gg

over F;, from which sampling is efficient.
* Optimize 6 to minimize the expected cost £,(0|s) = Ef-4,[cs(f)] over gg instead of pg.

» Gradient descent (GD) with REINFORCE-based gradient estimator:
VBIEf~q9 [Cs(f)] = [Ef~q9 [(Cs(f) - b(S))Vg 10g de (f)]

* b(s): a baseline function to reduce the variance of the gradient estimator.

[llustration GD

for TSP
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Auxiliary Distribution Designs

(For brevity, we omit conditional notations on s.)

For TSP on n nodes:

 Afeasible solution f as a permutation ¢
of n nodes, where r:(0) = ms(n).

 Choose the start node 7¢(0) randomly:
n—1

1
a5 (f) = zg . CITSP(7Tf|7Tf(0) =J).

j=0
* Chain rule in the visiting order:

n—-1
CITSP(ﬂf|7Tf(0)) = 1_[ CITSP(ﬂf(i)|7Tf(< ).
i=1

« Heatmap: matrix 8 € R™*" for edges.
exXp O - (i-1),m7(0)

QTSP(ﬂf(i)|7Tf(< D) = =5

Meta-Learning Framework

j=i €XP O (i-1)m ()

For MIS on n nodes:

 {a}s: the set of all possible orderings a
of the nodes in the independent set f.

la
qgus(f) = Z HqMIS(ai|a<i)-
a€fa}r i=1

* G(a.;): the set of nodes that have no
edge to {ay, ..., a;_1}.

» Heatmap: vector 8 € R™ for nodes.
exp O,

gmis(a;la<;) = .
Zjeg(a{<z}) exp 0

——> Meta-learning

————— - Instance-specific adaptation

* We train a meta-network F, over a collection of problem instances C = {(k,,A;)} to
predict instance-specific heatmap 65 = Fy (K, As).

 We adapt parameters & to each instance s via T gradient steps with learning rate a.

o” = o,

* Meta-objective:

o® = et _ av, e (657V]s),
e.sgt) = F¢§t) (KS)AS);

t=1,..,T,

t=090,..,T.

Lmeta((plc) = IESEC’ ['eq (HS(T)|S)] )

» First-order approximation of meta-gradient:

Vo Lmeta(P1C) ~ Esee [V, F o m (ics, As) - Vyrdq (07]s)].
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Overall inference procedure has three steps:
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1. Predict an initial heatmap for the problem instance using the GNN.

2. Fine-tune the heatmap via REINFORCE and sampling from the auxiliary distribution.

3. Decode the heatmap into a feasible solution (Greedy / Sampling / Monte Carlo Tree Search).

Sampling
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Main Results for TSP

We directly train on
large-scale graphs.

DIMES is able to
scale up to graphs
with 10,000 nodes.

DIMES outperforms
both DRL and
supervised methods
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Predict  8{” e R Fine-tune 6 e RV Decode  frew,
Method Type TSP-500 TSP-1000 TSP-10000
Length| Drop) Time] | Length| Drop) Time] | Length] Drop)  Time |
Concorde OR (exact) 16.55" — 37.66m 23.127 — 6.65h N/A N/A N/A
Gurobi OR (exact) 16.55 0.00% 45.63h N/A N/A N/A N/A N/A N/A
LKH-3 (default) OR 16.55 0.00%  46.28m 23.12 0.00% 2.57h 71.77 — 8.8h
LKH-3 (less trails) OR 16.55 0.00%  3.03m 23.12 0.00% 7.73m 71.79 — 51.27m
Nearest Insertion OR 20.62 24.59% Os 28.96 25.26% 0s 90.51 26.11% 6s
Random Insertion  OR 18.57 12.21% 0s 26.12 12.98% Os 81.85 14.04% 4s
Farthest Insertion OR 18.30 10.57% Os 25.72 11.25% Os 80.59 12.29% 6s
EAN RL+S 28.63 73.03% 20.18m 50.30 117.59% 37.07m N/A N/A N/A
EAN RL+S+2-OPT 23.75 43.57% 57.76m 47.73 106.46% 5.39h N/A N/A N/A
AM RL+S 22.64 36.84% 15.64m 4280 85.15%  63.97m 431.58 501.27% 12.63m
AM RL+G 20.02 20.99% 1.51m 31.15 34.75%  3.18m 141.68 97.39%  5.99m
AM RL+BS 19.53 18.03% 21.99m 29.90 29.23% 1.64h 129.40 80.28% 1.81h
GCN SL+G 20.72 79.61%  6.67Tm 48.62 110.29% 28.52m N/A N/A N/A
GCN SL+BS 30.37 83.55% 38.02m 51.26 121.73% 51.67m N/A N/A N/A
POMO+EAS-Emb  RL+AS 19.24 16.25% 12.80h N/A N/A N/A N/A N/A N/A
POMO+EAS-Lay RL+AS 19.35 16.92% 16.19h N/A N/A N/A N/A N/A N/A
POMO+EAS-Tab RL+AS 24.54 48.22% 11.61h 49.56 114.36%  63.45h N/A N/A N/A
Att-GCN SL+MCTS 16.97 2.54% 2.20m 23.86 3.22% 4,10m 74.93 4.39% 21.49m
RL+G 18.93 14.38% 0.97m 26.58 14,97% 2.08m 86.44 20.44% 4.65m
RL+AS+G 17.81 7.61% 2.10h 24.91 7.74% 4.49h 80.45 12.09% 3.07h
DIMES (ours) RL+S 18.84 13.84%  1.06m 26.3(_3 14.01%  2.38m SS.?S 19.48%  4.80m
’ ' RL+AS+S 17.80 7.55% 2.11h 24.89 7.70% 4.53h 80.42 12.05% 3.12h
RL+MCTS 16.87 1.93% 2.92m 23.73 2.64% 6.87m 74.63 3.98% 29.83m
RL+AS+MCTS 16.84 1.76% 2.15h 23.69 2.46% 4.62h 74.06 3.19% 3.57h

Main Results for MIS

DIMES significantly outperforms supervised method (Intel) in large-scale settings.

Despite being a general CO solver, DIMES is competitive with specially designed neural

MIS solver (LwD).

Method Ty SATLIB ER-[700-800] ER-[9000-11000]

ctho ype SizeT Dropl Timel) | SizeT Dropl Timel] | SizeT Dropl Timel]
KaMIS OR 425.96" — 37.58m | 44.877 — 52.13m | 381.31% — 7.6h
Gurobi OR 42595  0.00% 26.00m | 41.38 7.78%  50.00m N/A N/A N/A
Intel SL+TS N/A N/A N/A 3880 13.43% 20.00m N/A N/A N/A
Intel SL+G 420.66 1.48% 23.05m | 3486 2231% 6.06m | 28463 2535% 5.02m
DGL SLA4TS N/A N/A N/A 37.26 1696% 22.71m N/A N/A N/A
LwD RLA+S 42222 0.88% 18.83m | 41.17 825% 6.33m | 34588 9.29%  7.56m
DIMES (ours) RL+G 421.24 1.11% 24.17m | 3824 1478% 6.12m | 32050 15.95% 5.2lm
DIMES (ours) RL4S 42328 0.63% 2026m | 4206 6.26% 12.0lm | 33280 12.72% 12.5lm

Conclusion

* We addresses the scalability challenge of DRL for CO by proposing DIMES, which
employs a compact continuous parameterization and a meta-learning strategy.

 For TSP and MIS, DIMES can scale up to graphs with ten thousand nodes. While

trained without ground truth solutions, DIMES can outperform supervised methods.

« Future work may extend DIMES to general Mixed Integer Programming (MIP) by
reducing each integer value within range [U] to a sequence of [log, U] bits [1].

[1] Nair et al. Solving mixed integer programs using neural networks arXiv:2012.13349, 2020.



