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Abstract

Recently, deep reinforcement learning (DRL) models have shown promising results
in solving NP-hard Combinatorial Optimization (CO) problems. However, most
DRL solvers can only scale to a few hundreds of nodes for combinatorial opti-
mization problems on graphs, such as the Traveling Salesman Problem (TSP). This
paper addresses the scalability challenge in large-scale combinatorial optimization
by proposing a novel approach, namely, DIMES. Unlike previous DRL methods
which suffer from costly autoregressive decoding or iterative refinements of discrete
solutions, DIMES introduces a compact continuous space for parameterizing the
underlying distribution of candidate solutions. Such a continuous space allows
stable REINFORCE-based training and fine-tuning via massively parallel sampling.
We further propose a meta-learning framework to enable effective initialization
of model parameters in the fine-tuning stage. Extensive experiments show that
DIMES outperforms recent DRL-based methods on large benchmark datasets for
Traveling Salesman Problems and Maximal Independent Set problems.

1 Introduction

Combinatorial Optimization (CO) is a fundamental problem in computer science. It has important
real-world applications such as shipment planning, transportation, robots routing, biology, circuit
design, and more [67]. However, due to NP-hardness, a significant portion of the CO problems suffer
from an exponential computational cost when using traditional algorithms. As a well-known example,
the Traveling Salesman Problem (TSP) has been intensively studied [35, 60] for finding the most
cost-effective tour over an input graph where each node is visited exactly once before finally returning
to the start node. Over the past decades, significant effort has been made for designing more efficient
heuristic solvers [5, 20] to approximate near-optimal solutions in a reduced search space.

Recent development in deep reinforcement learning (DRL) has shown promises in solving CO
problems without manual injection of domain-specific expert knowledge [7, 42, 45]. The appeal of
neural methods is because they can learn useful patterns (such as graph motifs) from data, which
might be difficult to discover by hand. A typical category of DRL solvers, namely construction
heuristics learners, [7, 42] uses a Markov decision process (MDP) to grow partial solutions by adding
one new node per step, with a trained strategy which assigns higher probabilities to better solutions.
Another category of DRL-based solvers, namely improvement heuristics learners [10, 72], iteratively
refines a feasible solution with neural network-guided local Operations Research (OR) operations
[64]. A major limitation of these DRL solvers lies in their scalability on large instances. For example,
current DRL solvers for TSP can only scale to graphs with up to hundreds of nodes.
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The bad scalability of these DRL methods lies in the fact that they suffer from costly decoding of
CO solutions, which is typically linear in the number of nodes in the input graph. Since the reward
of reinforcement learning is determined after decoding a complete solution (with either a chain rule
factorization or iterative refinements), either construction or improvement heuristic learners would
encounter the sparse reward problem when dealing with large graphs [42, 33, 37]. While such an
overhead can be partially alleviated by constructing several parts of the solution in parallel [1] for
locally decomposable CO problems3, such as for maximum independent set (MIS) problems [54],
how to scale up neural solvers for CO problems in general, including the locally non-decomposable
ones (such as TSP) is still an open challenge.

In this paper, we address the scalability challenge by proposing a novel framework, namely DIMES
(DIfferentiable MEta Solver), for solving combinatorial optimization problems. Unlike previous
DRL-based CO solvers that rely on construction or improvement heuristics, we introduce a compact
continuous space to parameterize the underlying distribution of candidate solutions, which allows
massively parallel on-policy sampling without the costly decoding process, and effectively reduces
the variance of the gradients by the REINFORCE algorithm [71] during both training and fine-tuning
phases. We further propose a meta-learning framework for CO over problem instances to enable
effective initialization of model parameters in the fine-tuning stage. To our knowledge, we are the
first to apply meta-learning over a collection of CO problem instances, where each instance graph is
treated as one of a collection tasks in a unified framework.

We need to point out that the idea of designing a continuous space for combinatorial optimization
problems has been tried by the heatmaps approaches in the literature [48, 31, 19, 14, 44]. However,
there are major distinctions between the existing methods and our DIMES. For instance, Fu et al.
[19] learn to generate heatmaps via supervised learning (i.e., each training instance is paired with its
best solution) [4, 21], which is very costly to obtain on large graphs. DIMES is directly optimized
with gradients estimated by the REINFORCE algorithm without any supervision, so it can be trained
on large graphs directly. As a result, DIMES can scale to large graphs with up to tens of thousands of
nodes, and predict (nearly) optimal solutions without the need for costly generation of supervised
training data or human specification of problem-specific heuristics.

In our experiments, we show that DIMES outperforms strong baselines among DRL-based solvers on
TSP benchmark datasets, and can successfully scale up to graphs with tens of thousands of nodes. As
a sanity check, we also evaluate our framework with locally decomposable combinatorial optimization
problems, including Maximal Independent Set (MIS) problem for synthetic graphs and graphs reduced
from satisfiability (SAT) problems. Our experimental results show that DIMES achieve competitive
performance compared to neural solvers specially designed for locally decomposable CO problems.

2 Related Work

2.1 DRL-Based Construction Heuristics Learners

Construction heuristics methods create a solution of CO problem instance in one shot without further
modifications. Bello et al. [7] are the first to tackle combinatorial optimization problems using
neural networks and reinforcement learning. They used a Pointer Network (PtrNet) [68] as the policy
network and used the actor-critic algorithm [41] for training on TSP and KnapSack instances. Further
improved models have been developed afterwards [13, 42, 63, 14, 46], such as attention models
[66], better DRL algorithms [36, 52, 43, 45, 59, 73, 69], for an extended scope of CO problems such
as Capacitated Vehicle Routing Problem (CVRP) [57], Job Shop Scheduling Problem (JSSP) [76],
Maximal Independent Set (MIS) problem [36, 1], and boolean satisfiability problem (SAT) [75].

Our proposed method in this paper belongs to the category of construction heuristics learners in the
sense of producing a one-shot solution per problem instance. However, there are major distinctions
between previous methods and ours. One distinction is how to construct solutions. Unlike previous
methods which generate the solutions via a constructive Markov decision process (MDP) with rather
costly decoding steps (adding one un-visited node per step to a partial solution), we introduce a
compact continuous space to parameterize the underlying distribution of discrete candidate solutions,
and to allow efficient sampling from that distribution without costly neural network-involved decoding.

3Locally decomposable problem refers to the problem where the feasibility constraint and the objective can
be decomposed by locally connected variables (in a graph) [1].
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Another distinction is about the training framework. For instance, Drori et al. [14] proposes a similar
solution decoding scheme but employs a DRL framework to train the model. Instead, we propose a
much more effective meta-learning framework to train our model, enabling DIMES to be trained on
large graphs directly.

2.2 DRL-Based Improvement Heuristics Learners

In contrast to construction heuristics, DRL-based improvement heuristics methods train a neural
network to iteratively improve the quality of the current solution until computational budget runs
out. Such DRL-based improvement heuristics methods are usually inspired by classical local
search algorithms such as 2-opt [11] and the large neighborhood search (LNS) [65], and have been
demonstrated with outstanding results by many previous work [72, 51, 70, 12, 10, 26, 74, 53, 29, 37].
Improvement heuristics methods generally show better performance than construction heuristics
methods but are slower in computation in return.

2.3 Supervised Learners for CO Problems

Vinyals et al. [68] trained a Pointer Network to predict a TSP solution based on supervision signals
from the Held–Karp algorithm [6] or approximate algorithms. Li et al. [48] and Joshi et al. [31]
trained a graph convolutional network to predict the possibility of each node or edge to be included
in the optimal solutions of MIS and TSP problems, respectively. Recently, Joshi et al. [32] showed
that unsupervised reinforcement learning leads to better emergent generalization over various sized
graphs than supervised learning. Our work in this paper provides further evidence for the benefits of
the unsupervised training, or more specifically, unsupervised generation of heatmaps [48, 31, 19, 44],
for combinatorial optimization problems.

3 Proposed Method

3.1 Formal Definitions

Following a conventional notation [61] we define Fs as the set of discrete feasible solutions for a
CO problem instance s, and cs : Fs → R as the cost function for feasible solutions f ∈ Fs. The
objective is to find the optimal solution for a given instance s:

f∗s = argmin
f∈Fs

cs(f). (1)

For the Traveling Salesman Problem (TSP), Fs is the set of all the tours that visit each node exactly
once and returns to the starting node at the end, and cs calculates the cost for each tour f ∈ Fs by
summing up the edge weights in the tour. The size of Fs for TSP is n! for a graph with n nodes.
For the Maximal Independent Set (MIS) problem, Fs is a subset of the power set Ss = {0, 1}n and
consists of all the independent subsets where each node of a subset has no connection to any other
node in the same subset, and cs calculates the negation of the size of each independent subset.

We parameterize the solution space with a continuous and differentiable vector θ ∈ R|Vs|, where Vs
denotes the variables in the problem instance s (e.g., edges in TSP and nodes in MIS), and estimates
the probability of each feasible solution f as:

pθ(f | s) ∝ exp

( |Vs|∑
i=1

fi · θi
)

subject to f ∈ Fs. (2)

where pθ is an energy function over the discrete feasible solution space, f is a |Vs|-dimensional
vector with element fi ∈ {0, 1} indicating whether the ith variable is included in feasible solution f ,
and the higher value of θi means a higher probability for the ith variable produced by pθ(f | s).

3.2 Gradient-Based Optimization

When the combinatorial problem is locally decomposable, such a MIS, a penalty loss [34, 2] can be
added to suppress the unfeasible solutions, e.g.:

`Erdős(θ | s) =
∑
f∈Ss

[pθ(f | s) · (cs(f) + β · 1(f 6∈ Fs))] . (3)
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where β > maxf∈Fs cs(f). The objective function `Erdős can thus be calculated analytically and
enable end-to-end training. However, this is not always possible for general structured combinatorial
problems such as TSP4. Therefore, we propose to directly optimize the expected cost over the
underlying population of feasible solutions, which is defined as:

`p(θ | s) = Ef∼pθ [cs(f)] . (4)

Optimizing this objective requires efficient sampling, with which REINFORCE-based [71] gradient
estimation can be calculate. Nevertheless, a common practice to sample from the energy pθ functions
requires MCMC [47], which is not efficient enough. Hence we propose to design an auxiliary
distribution qθ over the feasible solutions Fs, such that the following conditions hold: 1) sampling
from qθ is efficient, and 2) qθ and pθ should convergence to the same optimal θ∗. Then, we can
replace pθ by qθ in our objective function as:

`q(θ | s) = Ef∼qθ [cs(f)] , (5)

and get the REINFORCE-based update rule as:

∇θEf∼qθ [cs(f)] = Ef∼qθ [(cs(f)− b(s))∇θ log qθ(f)], (6)

where b(s) denotes a baseline function that does not depend on f and estimates the expected cost
to reduce the variance of the gradients. In this paper, we use a sampling-based baseline function
proposed by Kool et al. [43].

Next, we specify the auxiliary distributions for TSP and MIS, respectively. For brevity, we omit the
conditional notations of s for all probability formulas in the rest of the paper.

3.2.1 Auxiliary Distribution for TSP

For TSP on an n-node graph, each feasible solution f consists of n edges forming a tour, which
can be specified as a permutation πf of n nodes, where πf (0) = πf (n) is the start/end node, and
πf (i) 6= πf (j) for any i, j with 0 ≤ i, j < n and i 6= j. Note that for a single solution f , n different
choices of the start node πf (0) correspond to n different permutations πf . In this paper, we choose
the start node πf (0) randomly with a uniform distribution:

qTSP(πf (0) = j) :=
1

n
for any node j; (7)

qTSP
θ (f) :=

n−1∑
j=0

1

n
· qTSP(πf | πf (0) = j). (8)

Given the start node πf (0), we factorize the probability via chain rule in the visiting order:

qTSP(πf | πf (0)) :=
n−1∏
i=1

qTSP(πf (i) | πf (< i)). (9)

Since the variables in TSP are edges, we let θi,j denote the θ value of edge from node i to node j for
notational simplicity, i.e., we use a matrix θ ∈ Rn×n to parameterize the probabilistic distribution of
n! discrete feasible solutions. We define:

qTSP(πf (i) | πf (< i)) :=
exp(θπf (i−1),πf (i))∑n
j=i exp(θπf (i−1),πf (j))

. (10)

Here a higher valued θi,j corresponds to a higher probability for the edge from node i to node j to
be sampled. The compact, continuous and differentiable space of θ allows us to leverage gradient-
based optimization without costly MDP-based construction of feasible solutions, which has been a
bottleneck for scaling up in representative DRL solvers so far. In other words, we also no longer
need costly MCMC-based sampling for optimizing our model due to the chain-rule decomposition.
Instead, we use autoregressive factorization for sampling from the auxiliary distribution, which is
faster than sampling with MCMC from the distribution defined by the energy function.

4TSP has a global constraint of forming a Hamiltonian cycle.
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3.2.2 Auxiliary Distribution for MIS

For the Maximal Independent Set (MIS) problem, the feasible solution is a set of independent nodes,
which means that none of the node has any link to any other node in the same set. To ease the analysis,
we further impose a constraint to the MIS solutions such that each set is not a proper subset of any
other independent set in the feasible domain.

To enable the chain-rule decomposition in probability estimation, we introduce a as an ordering of
the independent nodes in solution f , and {a}f as the set of all possible orderings of the nodes in f .
The chain rule applied to a can thus be defined as:

qMIS
θ (f) =

∑
a∈{a}f

qMIS(a), (11)

qMIS(a) =

|a|∏
i=1

qMIS(ai | a<i) =
|a|∏
i=1

exp(θai)∑
j∈G(a<i)

exp(θj)
.

where G(a<i) denotes the set of available nodes for growing partial solution (a1, . . . , ai−1), i.e., the
nodes that have no edge to any nodes in {a1, . . . , ai−1}. Notice again that the parameterization space
for MIS θ ∈ Rn (where n denotes the number of nodes in the graph) is compact, continuous and
differentiable, which allows efficient gradient-driven optimization.

Due to the space limit, we leave the proof of the convergence between pθ and qθ (i.e., qTSP
θ and qMIS

θ )
to the appendix.

3.3 Meta-Learning Framework

Model-Agnostic Meta-Learning (MAML) [18] is originally proposed for few-shot learning. In the
MAML framework, a model is first trained on a collection of tasks simultaneously, and then adapts
its model parameters to each task. The standard MAML uses second-order derivatives in training,
which are costly to compute. To reduce computation burden, the authors also propose first-order
approximation that does not require second-order derivatives.

Inspired by MAML, we train a graph neural network (GNN) over a collection of problem instances
in a way that the it can capture the common nature across all the instances, and adapt its distribution
parameters effectively to each instance based on the features/structure of each input graph. Let FΦ
be the graph neural network with parameter Φ, and denote by κs the input features of an instance
graph s in collection C, by As the adjacency matrix of the input graph, and by θs := FΦ(κs,As)
the instance-specific initialization of distribution parameters. The vanilla loss function is defined as
the expected cost of the solution for any graph in the collection as:

L(Φ | C) = Es∈C`q(θs) = Es∈C`q(FΦ(κs,As)). (12)

The gradient-based updates can thus be written as:

∇ΦL(Φ | C) = Es∈C [∇Φθs · ∇θs`q(θs)]

= Es∈C [∇ΦFΦ(κs,As) · ∇θs`q(θs)] .
(13)

where ∇θs`q(θs) is estimated using the REINFORCE algorithm (Equation 6). Since `q does not
depend on the ground-truth labels, we can further fine-tune neural network parameters on each single
test instance with REINFORCE-based updates, which is referred to as active search [7, 28].

Specifically, the fine-tuned parameters Φ(T )
s is computed using one or more gradient updates for each

graph instance s. For example, when adapting to a problem instance s using T gradient updates with
learning rate α, we have:

Φ(0)
s = Φ, Φ(t)

s = Φ(t−1)
s − α∇

Φ
(t−1)
s
L(Φ(t−1)

s | {s}) for 1 ≤ t ≤ T, (14)

θ(T )
s = F

Φ
(T )
s

(κs,As). (15)

Here we use AdamW [50] in our experiments. Next, we optimize the performance of the graph neural
network with updated parameters (i.e., Φ(T )

s ) with respect to Φ, with a meta-objective:

Lmeta(Φ | C) = Es∈C`q(θ(T )
s | s), (16)

5



Algorithm 1 MAML in DIMES

Input: p(C): distribution over CO problem instances
Input: α: step size hyperparameters

1: randomly initialize Φ
2: while not done do
3: Sample batch of graph instances ci ∼ p(C)
4: for all ci do
5: Sample K solutions Di = {f1, f2, . . . , fK} using qFΦ(κs,As) for ci
6: Evaluate∇Φ`q(FΦ(κs,As)) using D in Equation 13
7: Compute adapted parameters with Equation 14: Φ(T )

i = GradDescent(T )(Φ)
8: Sample K solutions D′i = {f ′1, f ′2, . . . , f ′K} using qF

Φ
(T )
s

(κs,As) for ci

9: end for
10: Update Φ = Φ−AdamW

(∑
ci∈p(C)∇Φ`q(FΦ(T )

s
(κs,As))

)
using each D′i in Equation (17)

11: end while

and calculate the meta-updates as:

∇ΦLmeta(Φ | C) = Es∈C
[
∇Φθ(T )

s · ∇
θ
(T )
s
`q(θ

(T )
s )

]
≈ Es∈C

[
∇
Φ

(T )
s
F
Φ

(T )
s

(κs,As) · ∇θ(T )
s
`q(θ

(T )
s )

]
.

(17)

Notice that we adopt the first-order approximation to optimize this objective, which ignores the
update via the gradient term of∇ΦL(Φ | {s}). We defer the derivation of the approximation formula
to the appendix. Algorithm 1 illustrates the full training process of our meta-learning framework.

3.4 Per-Instance Search

Given a fine-tuned (i.e., after active search) continuous parameterization of the solution space θ(T )
s ,

the per-instance search decoding aims to search for a feasible solution that minimizes the cost function
c. In this paper, we adotp three decoding strategies, i.e., greedy decoding, sampling, and Monte Carlo
tree search. Due to the space limit, the detailed description of three decoding strategies can be found
in the appendix.

3.5 Graph Neural Networks

Based on the shape of the differentiable variable θ required by each problem (i.e., Rn×n for TSP and
Rn for MIS), we use Anisotropic Graph Neural Networks [9] and Graph Convolutional Networks
[40] as the backbone network for TSP and MIS tasks, respectively. Due to the space limit, the detailed
neural architecture design can be found in the appendix.

4 Experiments

4.1 Experiments for Traveling Salesman Problem

4.1.1 Experimental Settings

Data Sets The training instances are generated on the fly. We closely follow the data generation
procedure of previous works, e.g., [42]. We generate 2-D Euclidean TSP instances by sampling each
node independently from a uniform distribution over the unit square. The TSP problems of different
scales are named TSP-500/1000/10000, respectively, where TSP-n indicates the TSP instance on n
nodes. For testing, we use the test instances generated by Fu et al. [19]. There are 128 test instances
in each of TSP-500/1000, and 16 test instances in TSP-10000.

Evaluation Metrics For model comparison, we report the average length (Length), average per-
formance drop (Drop) and averaged inference latency time (Time), respectively, where Length (the
shorter, the better) is the average length of the system-predicted tour for each test-set graph, Drop
(the smaller, the better) is the average of relative performance drop in terms of the solution length
compared to a baseline method, and Time (the smaller, the better) is the total clock time for generating
solutions for all test instance, in seconds (s), minutes (m), or hours (h).
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Table 1: Results of TSP. See Section 4.1.2 for detailed descriptions. * indicates the baseline for
computing the performance drop. Results of baselines (except those of EAS and the running time of
LKH-3, POMO, and Att-GCN) are taken from Fu et al. [19].

Method Type TSP-500 TSP-1000 TSP-10000
Length ↓ Drop ↓ Time ↓ Length ↓ Drop ↓ Time ↓ Length ↓ Drop ↓ Time ↓

Concorde OR (exact) 16.55∗ — 37.66m 23.12∗ — 6.65h N/A N/A N/A
Gurobi OR (exact) 16.55 0.00% 45.63h N/A N/A N/A N/A N/A N/A
LKH-3 (default) OR 16.55 0.00% 46.28m 23.12 0.00% 2.57h 71.77∗ — 8.8h
LKH-3 (less trails) OR 16.55 0.00% 3.03m 23.12 0.00% 7.73m 71.79 — 51.27m
Nearest Insertion OR 20.62 24.59% 0s 28.96 25.26% 0s 90.51 26.11% 6s
Random Insertion OR 18.57 12.21% 0s 26.12 12.98% 0s 81.85 14.04% 4s
Farthest Insertion OR 18.30 10.57% 0s 25.72 11.25% 0s 80.59 12.29% 6s

EAN RL+S 28.63 73.03% 20.18m 50.30 117.59% 37.07m N/A N/A N/A
EAN RL+S+2-OPT 23.75 43.57% 57.76m 47.73 106.46% 5.39h N/A N/A N/A
AM RL+S 22.64 36.84% 15.64m 42.80 85.15% 63.97m 431.58 501.27% 12.63m
AM RL+G 20.02 20.99% 1.51m 31.15 34.75% 3.18m 141.68 97.39% 5.99m
AM RL+BS 19.53 18.03% 21.99m 29.90 29.23% 1.64h 129.40 80.28% 1.81h
GCN SL+G 29.72 79.61% 6.67m 48.62 110.29% 28.52m N/A N/A N/A
GCN SL+BS 30.37 83.55% 38.02m 51.26 121.73% 51.67m N/A N/A N/A
POMO+EAS-Emb RL+AS 19.24 16.25% 12.80h N/A N/A N/A N/A N/A N/A
POMO+EAS-Lay RL+AS 19.35 16.92% 16.19h N/A N/A N/A N/A N/A N/A
POMO+EAS-Tab RL+AS 24.54 48.22% 11.61h 49.56 114.36% 63.45h N/A N/A N/A
Att-GCN SL+MCTS 16.97 2.54% 2.20m 23.86 3.22% 4.10m 74.93 4.39% 21.49m

DIMES (ours)

RL+G 18.93 14.38% 0.97m 26.58 14.97% 2.08m 86.44 20.44% 4.65m
RL+AS+G 17.81 7.61% 2.10h 24.91 7.74% 4.49h 80.45 12.09% 3.07h
RL+S 18.84 13.84% 1.06m 26.36 14.01% 2.38m 85.75 19.48% 4.80m
RL+AS+S 17.80 7.55% 2.11h 24.89 7.70% 4.53h 80.42 12.05% 3.12h
RL+MCTS 16.87 1.93% 2.92m 23.73 2.64% 6.87m 74.63 3.98% 29.83m
RL+AS+MCTS 16.84 1.76% 2.15h 23.69 2.46% 4.62h 74.06 3.19% 3.57h

Table 2: Ablation study on TSP-1000.

(a) On meta-learning (T = 10).

Inner updates Fine-tuning Length ↓

27.11
X 26.58

X 25.68
X X 24.91

(b) On fine-tuning parts (T = 5).

Part Length ↓

Cont. Param. 27.73
MLP 26.75
GNNOut+MLP 26.49
GNN+MLP 26.81

(c) On inner update steps T .

T 0 4 8 10 12 14

Length ↓ 25.79 25.28 25.08 25.08 24.97 24.91

(d) On heatmaps for MCTS.

Heatmap Length ↓

Unif(0, 1) 25.52
1/(ri + 1) 24.14

Att-GCN 23.86
DIMES (ours) 23.69

Training and Hardware Due to the space limit, please refer to the appendix.

4.1.2 Main Results

Our main results are summarized in Table 1, with T = 15 for TSP-500, T = 14 for TSP-1000,
and T = 12 for TSP-10000. We use a GNN followed by an MLP as the backbone, whose detailed
architecture is defered to the appendix. Note that we fine-tune the GNN output and the MLP only.
For the evaluation of DIMES, we fine-tune the DIMES on each instance for 100 steps (TSP-500
& TSP-1000) or for 50 steps (TSP-10000). For the sampling in DIMES, we use the temperature
parameter τ = 0.01 for DIMES+S and τ = 1 for DIMES+AS+S. We compare DIMES with 14 other
TSP solvers on the same test sets. We divide those 14 methods into two categories: 6 traditional OR
methods and 8 learning-based methods.

• Traditional operations research methods include two exact solvers, i.e., Concorde [4] and Gurobi
[21], and a strong heuristic solver named LKH-3 [23]. For LKH-3, we consider two settings: (i)
default: following previous work [42], we perform 1 runs with a maximum of 10000 trials (the
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Table 3: Results of various methods on MIS problems. Notice that we disable graph reduction
and 2-opt local search in all models for a fair comparison, since it is pointed out by [8] that all
models would perform similarly with a local search post-processing. See Section 4.2.2 for detailed
descriptions. * indicates the baseline for computing the performance drop.

Method Type SATLIB ER-[700-800] ER-[9000-11000]
Size ↑ Drop ↓ Time ↓ Size ↑ Drop ↓ Time ↓ Size ↑ Drop ↓ Time ↓

KaMIS OR 425.96∗ — 37.58m 44.87∗ — 52.13m 381.31∗ — 7.6h
Gurobi OR 425.95 0.00% 26.00m 41.38 7.78% 50.00m N/A N/A N/A

Intel SL+TS N/A N/A N/A 38.80 13.43% 20.00m N/A N/A N/A
Intel SL+G 420.66 1.48% 23.05m 34.86 22.31% 6.06m 284.63 25.35% 5.02m
DGL SL+TS N/A N/A N/A 37.26 16.96% 22.71m N/A N/A N/A
LwD RL+S 422.22 0.88% 18.83m 41.17 8.25% 6.33m 345.88 9.29% 7.56m

DIMES (ours) RL+G 421.24 1.11% 24.17m 38.24 14.78% 6.12m 320.50 15.95% 5.21m
DIMES (ours) RL+S 423.28 0.63% 20.26m 42.06 6.26% 12.01m 332.80 12.72% 12.51m

default configuration of LKH-3); (ii) less trials: we perform 1 run with a maximum of 500 trials
for TSP-500/1000 and 250 trials for TSP-10000, so that the running times of LKH-3 match those
of DIMES+MCTS. Besides, we also compare DIMES against simple heuristics, including Nearest,
Random, and Farthest Insertion.

• Learning-based methods include 8 variants of the 4 methods with the strongest results in recent
benchmark evaluations, namely EAN [13], AM [42], GCN [31], POMO+EAS [28], and Att-GCN
[19], respectively. Those methods can be further divided into the reinforcement learning (RL)
sub-category and the supervised learning (SL) sub-category. Some reinforcement learning methods
can further adopt an Active Search (AS) stage to fine-tune on each instance. The results of the
baselines except the running time of Att-GCN are taken from Fu et al. [19]. Note that baselines
are trained on small graphs and evaluated on large graphs, while DIMES can be trained directly on
large graphs. We re-run the publicly available code of Att-GCN on our hardware to ensure fair
comparison of time.

The decoding schemes in each method (if applicable) are further specified as Greedy decoding (G),
Sampling (S), Beam Search (BS), and Monte Carlo Tree Search (MCTS). The 2-OPT improvements
[11] can be optionally used to further improve the neural network-generated solution via heuristic
local search. See Section 3.4 for a more detailed descriptions of the various decoding techniques.

As is shown in the table, DIMES significantly outperforms many previous learning-based methods.
Notably, although DIMES is trained without any ground truth solutions, it is able to outperform the
supervised method. DIMES also consistently outperforms simple traditional heuristics. The best
performance is achieved by RL+AS+MCTS, which requires considerably more time. RL+AS+G/S
are faster than RL+AS+MCTS and are competitive to the simple heuristics. Removing AS in DIMES
shortens the running time and leads to only a slight, acceptable performance drop. Moreover, they
are still better than many previous learning-based methods in terms of solution quality and inference
time.

4.1.3 Ablation Study

On Meta-Learning To study the efficacy of meta-learning, we consider two dimensions of abla-
tions: (i) with or without inner gradient updates: whether to use fΦ(κs,As) or θ(T )

s in the objective
function; (ii) with or without fine-tuning in the inference phase. The results on TSP-1000 with
training phase T = 10 and greedy decoding are summarized in Table 2a. Both inner updates and
fine-tuning are crucial to the performance of our method. That is because meta-learning helps the
model generalize across problem instances, and fine-tuning helps the trained model adapt to each
specific problem instance.

On Fine-Tuning Parts We study the effect of fine-tuning parts during both training and testing.
In general, the neural architecture we used is a GNN appended with an MLP, whose output is the
continuous parameterization θ. We consider the following fine-tuning parts: (i) the continuous
parameterization (Cont. Param.); (ii) the parameter of MLP; (iii) the output of GNN and the
parameters of MLP; (iv) the parameters of GNN and MLP. Table 2b summarizes the results with
various fine-tuning parts for TSP-1000 with training phase T = 5 and greedy decoding. The result
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demonstrates that (iii) works best. We conjecture that (iii) makes a nice trade-off between universality
and variance reduction.

On Inner Gradient Update Steps We also study the effect of the number T of inner gradient
update steps during training. Table 2c shows the test performance on TSP-1000 by greedy decoding
with various T ’s. As the number of inner gradient updates increases, the test performance improves
accordingly. Meanwhile, more inner gradient update steps consumes more training time. Hence,
there is a trade-off between performance and training time in practice.

On Heatmaps for MCTS To study where continuous parameterization of DIMES is essential to
good performance in MCTS, we replace it with the following heatmaps: (i) each value is independently
sampled from Unif(0, 1); (ii) 1/(ri+1), where ri ≥ 1 denotes the rank of the length of the i-th edge
among those edges that share the source node with it. This can be regarded as an approximation to
the nearest neighbor heuristics. We also compare with the Att-GCN heatmap [19]. Comparison of
continuous parameterizations for TSP-1000 by MCTS is shown in Table 2d. The result confirms that
the DIMES continuous parameterization does not simply learn nearest neighbor heuristics, but can
identify non-trivial good candidate edges.

4.2 Experiments For Maximal Independent Set

4.2.1 Experimental Settings

Data Sets We mainly focus on two types of graphs that recent work [48, 1, 8] shows struggles
against, i.e., Erdős-Rényi (ER) graphs [16] and SATLIB [25], where the latter is a set of graphs
reduced from SAT instances in CNF. The ER graphs of different scales are named ER-[700-800]
and ER-[9000-11000], where ER-[n-N ] indicates the graph contains n to N nodes. The pairwise
connection probability p is set to 0.15 and 0.02 for ER-[700-800] and ER-[9000-11000], respectively.
The 4,096 training and 5,00 test ER graphs are randomly generated. For SATLIB, which consists
of 40,000 instances, of which we train on 39,500 and test on 500. Each SAT instance has between
403 to 449 clauses. Since we cannot find the standard train-test splits for both SAT and ER graphs
datasets, we randomly split the datasets and re-run all the baseline methods.

Evaluation Metrics To compare the solving ability of various methods, we report the average size
of the independent set (Size), average performance drop (Drop) and latency time (Time), respectively,
where Size (the larger, the better) is the average size of the system-predicted maximal independent set
for each test-set graph, Drop and Time are defined similarly as in Section 4.1.1.

Training and Hardware Due to the space limit, please refer to the appendix.

4.2.2 Main Results

Our main results are summarized in Table 3, where our method (last line) is compared 6 other MIS
solvers on the same test sets, including two traditional OR methods (i.e., Gurobi and KaMIS) and
four learning-based methods. The active search is not used for MIS evaluation since our preliminary
experiments only show insignificant improvements. For Gurobi, we formulate the MIS problem
as a integer linear program. For KaMIS, we use the code unmodified from the official repository5.
The four learning-based methods can be divided into the reinforcement learning (RL) category, i.e.,
S2V-DQN [36] and LwD [1]) and the supervised learning (SL) category, i.e., Intel [48] and DGL [8].

We produced the results for all the learning-based methods by running an integrated implementation6

provided by Böther et al. [8]. Notice that as pointed out by Böther et al. [8], the graph reduction
and local 2-opt search [3] can find near-optimal solutions even starting from a randomly generated
solution, so we disable the local search or graph reduction techniques during the evaluation for all
learning based methods to reveal their real CO-solving ability. The methods that cannot produce
results in the 10× time limit of DIMES are labeled as N/A.

As is shown in Table 3, our DIMES model outperforms previous baseline methods on the medium-
scale SATLIB and ER-[700-800] datasets, and significantly outperforms the supervised baseline (i.e.,

5https://github.com/KarlsruheMIS/KaMIS (MIT License)
6https://github.com/MaxiBoether/mis-benchmark-framework (No License)
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Intel) on the large-scale ER-[9000-11000] setting. This shows that supervised neural CO solvers
cannot well solve large-scale CO problem due to the expensive annotation problem and generalization
problem. In contrast, reinforcement-learning methods are a better choice for large-scale CO problems.
We also find that LwD outperforms DIMES on the large-scale ER-[9000-11000] setting. We believe
this is because LwD is specially designed for locally decomposable CO problems such as MIS and
thus can use parallel prediction, but DIMES are designed for general CO problems and only uses
autoregressive factorization. How to better utilize the fact of local decomposability of MIS-like
problems is one of our future work.

5 Conclusion & Discussion

Scalability without significantly scarifying the approximation accuracy is a critical challenge in
combinatorial optimization. In this work we proposed DIMES, a differentiable meta solver that is
able to solve large-scale combinatorial optimization problems effectively and efficiently, including
TSP and MIS. The novel parts of DIMES include the compact continuous parameterization and the
meta-learning strategy. Notably, although our method is trained without any ground truth solutions, it
is able to outperform several supervised methods. In comparison with other strong DRL solvers on
TSP and MIS problems, DIMES can scale up to graphs with ten thousand nodes while the others
either fail to scale up, or can only produce significantly worse solutions instead in most cases.

Our unified framework is not limited to TSP and MIS. Its generality is based on the assumption
that each feasible solution of the CO problem on hand can be represented with 0/1 valued variables
(typically corresponding the selection of a subset of nodes or edges), which is fairly mild and generally
applicable to many CO problems beyond TSP and MIS (see Karp’s 21 NP-complete problems [35])
with few modifications. The design principle of auxiliary distributions is to design an autoregressive
model that can sequentially grow a valid partial solution toward a valid complete solution. This
design principle is also proven to be general enough for many problems in neural learning, including
CO solvers. There do exist problems beyond this assumption, e.g., Mixed Integer Programming
(MIP), where variables can take multiple integer values instead of binary values. Nevertheless, Nair
et al. [56] showed that this issue can be addressed by reducing each integer value within range [U ] to
a sequence of dlog2 Ue bits and by predicting the bits from the most to the least significant bits. In
this way, a multi-valued MIP problem can be reduced to a binary-valued MIP problem with more
variables.

One limitation of DIMES is that the continuous parameterization θ is generated in one-shot without
intermediate steps, which could potentially limit the reasoning power of our method, as is shown
in the MIS task. Another limitation is that applying DIMES to a broader ranges of NP-complete
problems that variables can take multiple values, such as Mixed Integer Programming (MIP), is
non-trivial and needs further understanding of the nature of the problems.
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[16] Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17–60, 1960.

[17] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

11

https://www.math.uwaterloo.ca/tsp/concorde/index.html
https://openreview.net/forum?id=mk0HzdqY7i1
https://openreview.net/forum?id=mk0HzdqY7i1


[18] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, pages 1126–1135.
PMLR, 2017.

[19] Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to
arbitrarily large TSP instances. arXiv preprint arXiv:2012.10658, 2020.

[20] Teofilo F Gonzalez. Handbook of approximation algorithms and metaheuristics. CRC Press,
2007.

[21] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[23] K. Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling
salesman and vehicle routing problems. Technical report, Roskilde University, 2017.

[24] Keld Helsgaun. An effective implementation of the Lin–Kernighan traveling salesman heuristic.
European journal of operational research, 126(1):106–130, 2000.

[25] Holger H Hoos and Thomas Stützle. SATLIB: An online resource for research on SAT. Sat,
2000:283–292, 2000.

[26] André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle
routing problem. arXiv preprint arXiv:1911.09539, 2019.

[27] André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for
routing problems using variational autoencoders. In International Conference on Learning
Representations, 2020.

[28] André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. arXiv preprint arXiv:2106.05126, 2021.

[29] Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. arXiv preprint arXiv:2110.05291,
2021.

[30] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015.

[31] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional
network technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

[32] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. On learning paradigms for the
travelling salesman problem. arXiv preprint arXiv:1910.07210, 2019.

[33] Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, Thomas Laurent, and Xavier
Bresson. Learning tsp requires rethinking generalization. arXiv preprint arXiv:2006.07054,
2020.
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A Additional Related Work

A.1 Per-Instance Search

Once the neural network is trained over a collection of problem instances, per-instance fine-tuning can
be used to improve the quality of solutions via local search. For DRL solvers, Bello et al. [7] fine-tuned
the policy network on each test graph, which is referred as active search. Hottung et al. [28] proposed
three active search strategies for efficient updating of parameter subsets during search. Zheng
et al. [77] tried a combination of traditional reinforcement learning with Lin-Kernighan-Helsgaun
(LKH) Algorithm [49, 24]. Hottung et al. [27] performed per-instance search in a differentiable
continuous space encoded by a conditional variational auto-encoder [39]. With a heatmap indicating
the promising parts of the search space, discrete solutions can be found via beam search [31],
sampling [42], guided tree-search [48], dynamic programming [44], and Monte Carlo Tree Search
(MCTS) [19]. In this paper, we mainly adopt greedy, sampling, and MCTS as the per-instance search
techniques.

B Per-instance Search

In this section, we describe the decoding strategies used in our paper. Given a fine-tuned (i.e.,
after active search) continuous parameterization θ(T )

s of the solution space, the per-instance search
decoding aims to search for a feasible solution that minimizes the cost function cs.

Greedy Decoding generates the solution through a sequential decoding process similar to the
auxiliary distribution designed for each combinatorial optimization problem, where at each step, the
variable k with the highest score θk is chosen to extend the partial solution. For TSP, the first node in
the permutation is picked at random.

Sampling Inspired by Kool et al. [42], we propose to parallelly sample multiple solutions according
to the auxiliary distribution and report the best one. The continuous parameterization is divided by a
temperature parameter τ . The parallel sampling of solutions in DIMES is very efficient due to the
fact that it only relies on the final parameterization θ(T )

s /τ but not on neural networks.

Monte Carlo Tree Search Inspired by [19], for the TSP task, we also leverage a more advanced
reinforcement learning-based searching approach, i.e., Monte Carlo tree search (MCTS), to find
high-quality solutions. In MCTS, k-opt transformation actions are sampled guided by the continuous
parameterization θ(T )

s to improve the current solutions. The MCTS iterates over the simulation,
selection, and back-propagation steps, until no improving actions exists among the sampling pool.
For more details, please refer to [19].

C Implementation Details

C.1 Neural Architecture for TSP

Anisotropic Graph Neural Networks We follow Joshi et al. [33] on the choice of neural archi-
tectures. The backbone of the graph neural network is an anisotropic GNN with an edge gating
mechanism [9]. Let h`i and e`ij denote the node and edge features at layer ` associated with node i
and edge ij, respectively. The features at the next layer is propagated with an anisotropic message
passing scheme:

h`+1
i = h`i + α(BN(U `h`i +Aj∈Ni(σ(e

`
ij)� V

`h`j))), (18)

e`+1
ij = e`ij + α(BN(P `e`ij +Q

`h`i +R
`h`j)). (19)

where U `,V `,P `,Q`,R` ∈ Rd×d are the learnable parameters of layer `, α denotes the activation
function (we use SiLU [15] in this paper), BN denotes the Batch Normalization operator [30], A
denotes the aggregation function (we use mean pooling in this paper), σ is the sigmoid function, �
is the Hadamard product, and Ni denotes the outlinks (neighborhood) of node i. We use a 12-layer
GNN with width 32.
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The node and edge features at the first layer h0
i and e0ij are initialized with the absolute position of

the nodes and absolute length of the edges, respectively. After the anisotropic GNN backbone, a
Multi-Layer Perceptron (MLP) is appended and generates the final continuous parameterization θ for
all the edges. We use a 3-layer MLP with width 32.

Graph Sparsification As described, we focus on developing a neural TSP solver for graphs with
tens of thousands of nodes. Because the number of edges in the graph grows quadratically to the
number of nodes, a densely connected graph is intractable for an anisotropic GNN when it is applied
to large graphs. Therefore, we use a simple heuristic to sparsify the original graph. Specifically, we
prune the outlinks of each node such that it is only connected to k nearest neighbors. The continuous
parameterization θ is also pruned accordingly. As a result, the computation complexity of our method
is reduced from O(n2) to O(nk), where n is the number of nodes in the graph.

C.2 Neural Architecture for MIS

Graph Convolutional Networks We follow Li et al. [48] on the choice of neural architecture, i.e.,
using Graph Convectional Network (GCN) [40], since θ is merely scores for each node. Specifically,
the GCN backbone consists of multiple layers {hl} where hl ∈ RN×Cl

is the feature layer in the
l-th layer and Cl is the number of feature channels in the l-th layer. We initialize the input layer h0

with all ones and hl+1 is computed from the previous layer hl with layer-wise convolutions:

hl+1 = σ(hlUl
0 +D−

1
2AD−

1
2hlUl

1), (20)

where Ul
0 ∈ RCl×Cl+1

and Ul
1 ∈ RCl×Cl+1

are trainable weights in the convolutions of the network,
D is the degree matrix of A with its diagonal entry D(i, i) =

∑
jA(j, i), and σ(·) is the ReLU [55]

activation function. After the GCN backbone, a 10-layer Multi-Layer Perceptron (MLP) with residual
connections [22] is appended and generates the final continuous parameterization θ for all the nodes.

D Experimental Details

D.1 TSP

Training For TSP-500, we train our model for 120 meta-gradient descent steps (1.5 h in total) with
T = 15. For TSP-1000, we train our model for 120 meta-gradient descent steps (1.7 h in total) with
T = 14. For TSP-10000, we train our model for 50 meta-gradient descent steps (10 h in total) with
T = 12. We generate 3 instances per meta-gradient descent step. We use the AdamW optimizer [50]
with learning rate 0.005 and weight decay 0.0005 for meta-gradient descent steps, and with learning
rate 0.05 for REINFORCE gradient descent steps. For other learning-based baseline methods, we
download and rerun the source codes published by their original authors based on their pre-trained
models.

Hardware We follow the hardware environment suggested by Fu et al. [19]. For the three traditional
algorithms, since their source codes do not support running on GPUs, they run on Intel Xeon Gold
5118 CPU @ 2.30GHz. To ensure fair comparison, learning-based methods run on GTX 1080 Ti
GPU during the testing phase. MCTS runs on Intel Xeon Gold 6230 80-core CPU @ 2.10GHz, where
we use 64 threads for TSP-500 and TSP-1000, and 16 threads for TSP-10000. For the training phase,
we train our model on NVIDIA Tesla P100 16GB GPU.

Reproduction We implement DIMES for TSP based on PyTorch Geometric [17] in LibTorch and
PyTorch [62]. Our code for TSP is publicly available.7 The test instances are provided by Fu et al.
[19].8

D.2 MIS

Training For SAT, we train our model for 50k meta-gradient steps with T = 1. For ER-[700-800],
we train our model for 150k meta-gradient steps with T = 1. For ER-[9000-11000], we initialize

7https://github.com/DIMESTeam/DIMES (MIT license)
8https://github.com/Spider-scnu/TSP (MIT license)
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our model from the checkpoint of ER-[700-800], and further train it for 200 meta-gradient steps.
We use a batch size of 8 on all datasets and Adam optimizer [38] with learning rate 0.001 for the
meta-gradient descent step, and with learning rate 0.0002 for REINFORCE gradient descent steps.
For other learning-based baseline methods, we mainly use an integrated implementation9 provided
by Böther et al. [8].

Hardware All the methods are trained and evaluated on a single NVIDIA Ampere A100 40 GB
GPU, with AMD EPYC 7713 64-Core CPUs.

Reproduction Our code for MIS is publicly available.10 Following Böther et al. [8], for SAT, we
use the “Random-3-SAT Instances with Controlled Backbone Size” dataset11 and randomly split it
into 39500 training instances and 500 test instances. For the Erdős-Rényi graphs, both training and
test instances are randomly generated.

E Proofs

In this section, we follow the notation introduced in Section 3.

E.1 Convergence of Solution Distributions

The following propositions show that pθ and qθ converge to the same solution. They imply that we
can optimize qθ instead of pθ.

Proposition 1 (TSP version). Let 0 < δ � 1 be a sufficiently small number. If qTSP
θ (f) ≥ 1− δ for

a solution f ∈ F , then we also have pθ(f) ≥ 1−O(δ).

Proposition 2 (MIS version). Suppose that θ is normalized (i.e.,
∑
i exp(θi) = 1) and uniformly

bounded w.r.t. a solution f ∈ F (i.e.,
∑
i fi exp(θi)/ exp(

∑
i fiθi) ≤ L for a constant L > 0). Let

0 < δ � 1 be a sufficiently small number. If qMIS
θ (f) ≥ 1− δ, then we also have pθ(f) ≥ 1−O(δ).

Remark. Propositions 1 & 2 imply that if qθ converges to f (δ → 0+), then pθ also converges to f .

Proof for TSP. Using the bound of qTSP
θ (f), we have for any node j:

qTSP(πf | πf (0) = j) = nqTSP
θ (f)−

∑
i6=j

qTSP(πf | πf (0) = i) (21)

≥ nqTSP
θ (f)− (n− 1) (22)

≥ n(1− δ)− (n− 1) = 1−O(δ). (23)

Thus, for any edge (i, j) in the tour πf and any edge (i, k) 6= (i, j),

θi,j − θi,k = log
exp(θi,j)

exp(θi,k)
(24)

≥ log
qθ(πf (1) = j | πf (0) = i)

1− qθ(πf (1) = j | πf (0) = i)
(25)

≥ log
qθ(πf | πf (0) = i)

1− qθ(πf | πf (0) = i)
(26)

≥ log
1−O(δ)

O(δ)
. (27)

Note that for any edge (i, j) in the tour f (denoted by (i, j) ∈ πf ) and any solution g ∈ F \ {f},
there exist a unique kgi such that edge (i, kgi ) is in the tour πg, and (i, kgi ) 6= (i, j) for at least one

9https://github.com/MaxiBoether/mis-benchmark-framework (No license)
10https://github.com/DIMESTeam/DIMES (MIT license)
11https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/CBS/descr_CBS.html
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edge (i, j) ∈ πf . Then,

pθ(f) =
1

1 +
∑
g∈F\{f} exp

(
−
∑

(i,j)∈f (θi,j − θi,kgi )
) (28)

=
1

1 +
∑
g∈F\{f} exp

(
−
∑

(i,j)∈f\g(θi,j − θi,kgi )
) (29)

≥ 1

1 +
∑
g∈F\{f} exp

(
−
∑

(i,j)∈f\g log
1−O(δ)
O(δ)

) (30)

= 1−O(δ). (31)

Proof for MIS. Let |g| denote the size of a solution g ∈ F , i.e., |g| =
∑
i gi. With a little abuse of

notation, let g ∈ F also denote the corresponding independent set. Note that

maxi/∈f exp(θi)

maxi/∈f exp(θi) +
∑
i∈f exp(θi)

(32)

≤
∑
i/∈f exp(θi)∑

i/∈f exp(θi) +
∑
i∈f exp(θi)

(33)

=

∑
i/∈f exp(θi)∑
i exp(θi)

=
∑
i/∈f

qMIS(a1 = i) (34)

= qMIS(a1 /∈ f) ≤ 1− qMIS
θ (f) ≤ δ. (35)

This implies

max
i/∈f

exp(θi) ≤
δ

1− δ
∑
i∈f

exp(θi). (36)

Recall that we have assumed in Section 3.2.2 that each f ′ ∈ F is not a proper subset of any
other f ′′ ∈ F . Thus for any f, g ∈ F , we have f \ g 6= ∅, and g \ f 6= ∅. Note also that
exp(θi) ≤

∑
j exp(θj) = 1 for all nodes i. Hence,

pθ(f) =

(
1 +

∑
g∈F\{f}

exp(
∑
i giθi)

exp(
∑
i fiθi)

)−1
(37)

=

(
1 +

∑
g∈F\{f}

∏
i∈g\f exp(θi)∏
i∈f\g exp(θi)

)−1
(38)

≥
(
1 +

∑
g∈F\{f}

maxi∈g\f exp(θi)∏
i∈f\g exp(θi)

)−1
(39)

≥
(
1 +

∑
g∈F\{f}

maxi/∈f exp(θi)∏
i∈f exp(θi)

)−1
(40)

≥
(
1 +

∑
g∈F\{f}

δ
1−δ

∑
i∈f exp(θi)∏

i∈f exp(θi)

)−1
(41)

≥
(
1 +

∑
g∈F\{f}

δ

1− δ
· L
)−1

(42)

= 1−O(δ). (43)
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E.2 First-Order Approximation of Meta-Gradient

The following proposition gives a first-order approximation formula of the meta-gradient.

Proposition 3. Let FΦ(κs, As) be a GNN F with parameter Φ and input (κs, As), L(Φ | {s})
be a loss function, and α > 0 be a learning rate. Suppose Φ(0)

s = Φ, and Φ(t)
s = Φ(t−1)

s −
α∇

Φ
(t−1)
s
L(Φ(t−1)

s | {s}) for 1 ≤ t ≤ T , and θ(T )
s = F

Φ
(T )
s

(κs, As). Then,

∇Φθ(T )
s = ∇

Φ
(T )
s
F
Φ

(T )
s

(κs, As) +O(α).

Proof. The proof resembles [58]. By chain rule,

∇
Φ

(0)
s
Φ(T )
s =

T∏
t=1

∇
Φ

(t−1)
s

Φ(t)
s (44)

=

T∏
t=1

∇
Φ

(t−1)
s

(Φ(t−1)
s − α∇

Φ
(t−1)
s
L(Φ(t−1)

s | {s})) (45)

=

T∏
t=1

(I − α∇2

Φ
(t−1)
s
L(Φ(t−1)

s | {s})) (46)

= I +

T∑
k=1

(−α)k
∑

1≤t1<···<tk≤T

k∏
i=1

∇2

Φ
(ti−1)
s

L(Φ(ti−1)
s | {s}) (47)

= I +O(α). (48)

Hence,

∇Φθ(T )
s = ∇

Φ
(0)
s
Φ(T )
s ∇Φ(T )

s
F
Φ

(T )
s

(κs, As) (49)

= (I +O(α))∇
Φ

(T )
s
F
Φ

(T )
s

(κs, As) (50)

= ∇
Φ

(T )
s
F
Φ

(T )
s

(κs, As) +O(α). (51)

F Additional Experiments for TSP

F.1 Performance on TSP-100

We trained DIMES on TSP-100 and evaluate it on TSP-100 with T = 10 and 0 (i.e., with and without
meta-learning). Since MCTS is the best per-instance search scheme for DIMES (see Table 1), we also
use MCTS here. When using AS, we fine-tune DIMES on each instance for 100 steps. We compare
DIMES with learning-based methods listed in Section 4.1.2. Results of baselines are taken from Fu
et al. [19]. The results are presented in Table 4.

As is shown in the table, DIMES outperforms all learning-based methods, and its results are very
close to optimal lengths given by exact solvers. The results suggest that DIMES achieves the best in-
distribution performance among learning-based methods. Notably, with meta-learning (T = 10), even
when DIMES does not fine-tune (i.e., no active search) for each problem instance in evaluation, it still
outperforms all other learning-based methods. This again demonstrates the efficacy of meta-learning
to DIMES.

F.2 Extrapolation Performance

We evaluate the exptrapolation performance of DIMES (i.e., trained on smaller graphs and tested on
larger graphs). We train the model on TSP-100 and test it on TSP-500/1000/10000. For testing, we
use RL+S (τ = 0.01) without active search. The results are reported in Table 5 in comparison with
corresponding results trained on larger graphs (TSP-n).
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Table 4: Results on TSP-100. * indicates the baseline for computing the performance drop.

Method Type Length ↓ Drop ↓

Concorde OR (exact) 7.7609* —
Gurobi OR (exact) 7.7609* —
LKH-3 OR 7.7611 0.0026%

EAN RL+S 8.8372 13.8679%
EAN RL+S+2-OPT 8.2449 6.2365%
AM RL+S 7.9735 2.7391%
AM RL+G 8.1008 4.3791%
AM RL+BS 7.9536 2.4829%
GCN SL+G 8.4128 8.3995%
GCN SL+BS 7.8763 1.4828%
Att-GCN SL+MCTS 7.7638 0.0370%

DIMES (T = 0) RL+MCTS 7.7647 0.0490%
DIMES (T = 0) RL+AS+MCTS 7.7618 0.0116%
DIMES (T = 10) RL+MCTS 7.7620 0.0142%
DIMES (T = 10) RL+AS+MCTS 7.7617 0.0103%

Table 5: Results of DIMES (RL+S). “Trained on TSP-100” indicates extrapolation performance.

Setting TSP-500 TSP-1000 TSP-10000
Length ↓ Drop ↓ Length ↓ Drop ↓ Length ↓ Drop ↓

Trained on TSP-n 18.84 13.84% 26.36 14.01% 85.75 19.48%
Trained on TSP-100 19.21 16.07% 27.21 17.69% 86.24 20.16%

From the table we can observe that the performance of DIMES does not drop much, which demon-
strates the nice extrapolation performance of DIMES. One of our hypotheses is that graph sparsifica-
tion in our neural network (see Appendix C.1) avoids the explosion of activation values in the graph
neural network. Another hypothesis is that meta learning tends to not generate too extreme values in
(see point 9 of our previous response) and hence improve the generalization capability.

F.3 Stability of Training

We compare the training settings of AM [42], POMO [45], and DIMES in Table 6. The training costs
of AM and POMO are obtained from their papers12 A training step means a gradient descent step of
the GNN. That is, for AM/POMO, a training step means a gradient descent step over a batch; for
DIMES, a training step means a meta-gradient descent step.

The table shows that DIMES is much more sample-efficient than AM/POMO. Notably, DIMES
achieves stable training using only 3 instances per meta-gradient descent step. Hence, its total training
time is accordingly much shorter, even though its per-step time is longer. Moreover, the stability of
training enables us to use a larger learning rate, which also accelerates training.

To further illustrate the fast stable training of DIMES, we compare the dynamics of training among
AM, POMO, and DIMES in Figure 1. We closely follow the training settings of their papers, i.e., we
train AM/POMO on TSP-100 and DIMES on TSP-500. For AM/POMO, we train their models on
our hardware by re-running their public source code. The performance is evaluated using TSP-500
test instances. For DIMES, we use RL+S in evaluation.

From Figure 1a, we can observe that DIMES stably converges to a better performance within fewer
time, while the dynamics of training AM/POMO are slower and less stable. From Figure 1b, we can
observe that DIMES converges at much fewer training steps. The results again demonstrate that the
training of DIMES is fast and stable.

12For AM/POMO, per-step training time is estimated by total training time divided by total training steps.
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Table 6: Comparison of training settings for TSP-500/1000/10000.

Setting AM POMO DIMES

Training problem scale TSP-100 TSP-100 TSP-500 / 1000 / 10000
Training descent steps 250,000 312,600 120 / 120 / 50
Per-step training instances 512 64 3
Total training instances 128,000,000 20,000,000 360 / 360 / 150
Per-step training time 0.66 s 0.28 s 45 s / 51 s / 12 m
Total training time 2 d 1 d 1.5 h / 1.7 h / 10 h
Training GPUs 2 1 1
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Figure 1: Evaluation performance vs training cost.
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