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ABSTRACT

Multivariate time series (MTS) imputation is a widely studied prob-
lem in recent years. Existing methods can be divided into two main
groups, including (1) deep recurrent or generative models that pri-
marily focus on time series features, and (2) graph neural networks
(GNNs) based models that utilize the topological information from
the inherent graph structure of MTS as relational inductive bias for
imputation. Nevertheless, these methods either neglect topological
information or assume the graph structure is fixed and accurately
known. Thus, they fail to fully utilize the graph dynamics for precise
imputation in more challenging MTS data such as networked time

series (NTS), where the underlying graph is constantly changing
and might have missing edges. In this paper, we propose a novel
approach to overcome these limitations. First, we define the prob-
lem of imputation over NTS which contains missing values in both
node time series features and graph structures. Then, we design a
new model named PoGeVon which leverages variational autoen-
coder (VAE) to predict missing values over both node time series
features and graph structures. In particular, we propose a new node
position embedding based on random walk with restart (RWR) in
the encoder with provable higher expressive power compared with
message-passing based graph neural networks (GNNs). We further
design a decoder with 3-stage predictions from the perspective of
multi-task learning to impute missing values in both time series
and graph structures reciprocally. Experiment results demonstrate
the effectiveness of our model over baselines.
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1 INTRODUCTION

Multivariate time series (MTS) data are common inmany real-world
applications, such as stock prediction [13, 69], traffic forecasting [42,
77, 78] and pandemic analysis [30, 51]. However, these data are
often incomplete and contain missing values due to reasons such
as market close or monitoring sensor/system failure. Predicting the
missing values, which is referred to as the MTS imputation task,
plays an important role in these real-world applications.

Recently, a large amount of approaches emerge for MTS im-
putation [16] in the literature. To name a few, BRITS [5] is built
upon bidirectional recurrent modules and GAIN [75] is one of the
earliest works that use adversarial training for the task. However,
many of them ignore the available relational information within
the data and thus are less effective to predict missing values com-
pared to those considering both spatial and temporal information.
In order to tackle this problem, some recent works utilize GNNs
or other similar algorithms to assist the imputation over MTS data.
GRIN [11] adopts a bidirectional recurrent model based on message
passing neural networks [21]. They perform a one-step propagation
of the hidden representations on the graph to capture the spatial
dependencies within the MTS data. SPIN [47] is a follow-up method
which solves the error accumulation problem of GRIN in highly
sparse data. It introduces a new attention mechanism to capture
spatial-temporal information through inter-node and intra-node at-
tentions. By stacking several attention blocks, the model simulates
a diffusion process and can handle data with high missing rates.
Recently, NET3 [28] generalizes the setting and studies tensor time
series data in which the underlying graph contains multiple modes.

The extended version of this paper is available at: https://arxiv.org/pdf/2305.18612.pdf.
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Figure 1: An illustrative example of an interaction network

during the COVID-19 pandemic where some patients’ infec-

tion status might not be available and we have no access to

whom these people interact with, which represents a net-

worked time series (NTS) with both missing node features

and missing edges.

The authors utilize a tensor graph convolution network (GCNs)
and a tensor recurrent neural network (RNNs) to handle the tensor
graphs and time series respectively.

Despite the strong empirical performance of these methods on
the MTS imputation problem, they rely on the assumption that
the underlying graph is fixed and accurately known. However, the
graph structure of an MTS may constantly change over time in
real-world scenarios. Take epidemiological studies as an example,
during the evolution of a pandemic, individuals like human beings
or animals may move around and thus the graph that models the
spread of disease is dynamic. In literature, such time series data are
referred to as networked time series (NTS)1 [28]. Given the nature of
NTS data, the missing components can occur in both the node fea-
tures and the graph structures (See an example in Figure 1), which
makes NTS imputation an essentially harder problem compared to
MTS imputation.

In this paper, we first formally define the problem of NTS im-
putation. We point out that the key challenges of this problem are
twofold: (1) The graph that lies behind time series data is evolv-
ing constantly, and contains missing edges. Therefore, algorithms
should capture the graph dynamics and at the same time be able
to restore the lost structures. (2) The node feature time series also
contains missing values, which requires the model to solve a gen-
eral MTS imputation problem as well. To address these challenges,
we formulate NTS imputation as a multi-task learning problem
and propose a novel model named PoGeVon based on variational
autoencoder (VAE) [34]. Our proposed model consists of two parts,
including a recurrent encoder with node position embeddings based
on randomwalk with restart (RWR) [59] and a decoder with 3-stage
predictions. The global and local structural information obtained
from RWR with respect to a set of anchor nodes provides useful
node representations. Moreover, the 3-stage prediction module in
the decoder is designed to impute missing features in time series
and graph structures reciprocally: the first stage prediction fills the
missing values for node features and then is used for the imputa-
tion over graph structures during the second stage, in return, the
predicted graph structures are used in the third stage for node fea-
ture imputation. Finally, we replicate the VAE model in PoGeVon

1In some research works [38], NTS is also named as network time series.

to handle the bidirectional dynamics in the NTS data. The main
contributions of this paper can be summarized as:

• Problem Definition. To our best knowledge, we are the
first to study the joint problem of MTS imputation and graph
imputation over networked time series data.

• Novel Algorithm and Analysis. We propose a novel im-
putation model based on VAE, which consists of an encoder
with RWR-based node position embeddings, and a decoder
with 3-stage predictions. We provide theoretical analysis of
the expressive power of our position embeddings compared
with message-passing based temporal GNNs, as well as the
benefit of multi-task learning approach for NTS imputation
problem from the perspective of information bottleneck.

• Empirical Evaluations.We demonstrate the effectiveness
of our method by outperforming powerful baselines for both
MTS imputation and link prediction tasks on various real-
world datasets.

The rest of the paper is organized as follows. Section 2 defines
the imputation problem over NTS data. Section 3 presents the
proposed PoGeVon model. Section 4 shows the experiment results.
Related works and conclusions are given in Section 5 and Section 6
respectively.

2 PROBLEM DEFINITION

Table 1 lists main symbols and notations used throughout this
paper. Calligraphic letters denote tensors or graphs (e.g., X, G),
bold uppercase letters are used for matrices (e.g., A), bold lowercase
letters are for vectors (e.g., v). Uppercase letters (e.g.,𝑇 ) are used for
scalars, and lowercase letters (e.g., 𝑖) are for indices. For matrices,
we use A[𝑖, 𝑗] to denote the value at the 𝑖-th row and 𝑗-th column.

We first present some necessary preliminaries and then introduce
the networked time series imputation problem in this section.

Definition 2.1 (Multivariate Time Series (MTS)). A mul-

tivariate time series X ∈ R𝑇×𝑁×𝐷
is a sequence of observations:

{X1,X2, ...,X𝑇 }, where each observation X𝑡 ∈ R𝑁×𝐷
is a slice of X

at time step 𝑡 that contains 𝑁 entities with 𝐷 features.

Definition 2.2 (NetworkedTime Series (NTS)). Networked
time series is an extension of multivariate time series, in which a se-

quence of graphs G(A,X) = {𝐺1,𝐺2, ...,𝐺𝑇 } is given, andA models

the node interactions as time goes by. Each graph 𝐺𝑡 is represented

as a weighted adjacency matrix A𝑡 ∈ R𝑁×𝑁
with the node feature

matrix X𝑡 ∈ R𝑁×𝐷
.

Definition 2.3 (Mask Tensor). A binary mask tensor M :
{M1,M2, ...,M𝑇 } ∈ R𝑇×𝑁×𝐷

serves as the indicator of missing values

in MTS data, in which the value M𝑡 [𝑖, 𝑗] indicates the availability of

each feature 𝑗 of entity 𝑖 at time step 𝑡 :M𝑡 [𝑖, 𝑗] being 0 or 1 indicates
the corresponding feature is missing or observed.

Given the nature of NTS data, its missing data can occur in two
parts: (1) missing values in node feature time series, and (2) missing
edges in graph structures. The former is similar to missing values
in traditional MTS, while the latter is unique in NTS which demon-
strates the underlying dynamics of a graph sequence. Therefore, we
can also define mask tensor for graph adjacency sequence similar
to Definition 2.3. We formally define the partially observed NTS
data and NTS imputation problem as follows:
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Table 1: Symbols and Notations.

Symbol Definition

G sequence of graphs
A tensor of graph adjacency sequence
X tensor of multivariate time series
M mask tensor of X
R tensor of node position embeddings
𝐺𝑡 graph at time step 𝑡
�̃�𝑡 observed graph at time step 𝑡
G̃ observed sequence of graphs
Ã observed tensor of graph adjacency sequence
X̃ observed multivariate time series

A𝑡 adjacency matrix at time 𝑡
X𝑡 node feature matrix at time 𝑡
M𝑡 mask matrix at time 𝑡
R𝑡 RWR position matrix at time 𝑡
r𝑡,𝑖 RWR position score of node 𝑖 at time 𝑡
e𝑖 one-hot restart vector with value 1 at index 𝑖

D = diag(d) diagonal matrix of the degree vector d
A⊤ transpose of A
Z latent node embedding matrix of VAE

𝐻 (𝑋 ) entropy of random variable 𝑋
𝐼 (𝑋 ;𝑌 ) mutual information between 𝑋 and 𝑌

𝑇 length of time series
𝑁 number of nodes
𝐷 number of features

𝑖, 𝑗, 𝑢, 𝑣 indices of nodes
𝑐 restart probability in RWR
𝑧 latent representations of VAE

\,𝛾, 𝜙 parameters of neural networks
∥ · ∥𝐹 Frobenius norm
⊙ Hadamard product

Definition 2.4 (Partially Observed NTS). A partially ob-

served NTS: G(Ã, X̃) = {�̃�1, �̃�2, ..., �̃�𝑇 } consists of observed graph
adjacency tensor Ã and observed node feature tensor X̃. The value

of Ã𝑡 [𝑖, 𝑗] and X̃𝑡 [𝑖, 𝑗] can be observed only if M𝐴
𝑡 [𝑖, 𝑗] = 1 and

M𝑋
𝑡 [𝑖, 𝑗] = 1 where M𝐴

and M𝑋
are the mask tensors for graph

adjacency structure and node features respectively.

Problem 1 (NTS Imputation).
Given: A partially observed NTS with graph sequence G(Ã, X̃) =

{�̃�1, �̃�2, ..., �̃�𝑇 };
Output: The predicted graph adjacency tensor A and the tensor X

of node feature time series.

Note. For clarity, we use node features and node time series
interchangeably, and same for the graph adjacency imputations
and missing edges/links predictions.

3 METHODOLOGY

In this section, we introduce our model named Position-aware
Graph Enhanced Variational Autoencoders (PoGeVon) in detail.
In order to predict the missing values in both the node features
and the graph structures, we design a novel variational autoencoder
(VAE), whose detailed architecture is shown in Figure 3. It consists

of an encoder with node position embeddings based on random

walk with restart (RWR), and a decoder with 3-stage predictions. We
then replicate the VAE to handle bidirectional dynamics. We start
in Subsection 3.1 to discuss the multi-task learning setting of NTS
imputation problem, analyze its mutual benefit and implications
to the encoder/decoder design. Then, we present the details of the
proposed encoder (Subsection 3.2) and decoder (Subsection 3.3),
followed by the training objective in Subsection 3.4 as well as the
compelxity analysis in Subsection 3.5.

Figure 2: An illustrative example of mutual reinforcing ef-

fect between node feature imputation and graph structure

imputation, based on 4 monitor stations in AQ36 dataset (See

Section 4 for the details of the dataset). Correlation between

three time series (1001, 1002, and 1003, indicated by three

red boxes) helps impute the missing edges between them

(the two red dashed lines). Meanwhile, the edges between

1001, 1002 and 1004 (the two purple lines) helps impute time

series/node features by capturing the lagged correlation be-

tween them (the three purple boxes). Best viewed in color.

3.1 Multi-Task Learning Framework

Because of the potential mutual benefit of predicting missing node
features and edges, it is natural to formulate the NTS imputation as
a multi-task learning problem which consists of the imputation task
for node time series and the link prediction task for graph structures.
Let us analyze the benefit of modeling NTS imputation as a multi-
task learning problem from the perspective of information bottleneck

in unsupervised representation learning [1, 58], and formulate the
objective of NTS imputation as:

max[𝐼 (Ã, X̃; 𝑧) − 𝛽𝐼 (𝑧; G̃𝑡 :𝑡+Δ𝑡 )] (1)

where 𝑧 is the latent representation , 𝐼 (·; ·) is the mutual informa-
tion, G̃𝑡 :𝑡+Δ𝑡 is the data sample which represents a sliding window
of NTS data and 𝛽 is the Lagrange multiplier. This formulation
closely relates to the objective of a 𝛽-VAE [1, 24]. Here, the second
term 𝛽𝐼 (𝑧; G̃𝑡 :𝑡+Δ𝑡 ) in Eq. (1) constraints the amount of identity in-
formation of each data sample that can transmit through the latent
representation 𝑧. In 𝛽-VAE, this is upper bounded by minimizing
the Kullback–Leibler divergence 𝛽 · KL[𝑞\ (𝑧 |𝑋 ) | |𝑝 (𝑧)] [3]. The
first term 𝐼 (Ã, X̃; 𝑧) in Eq. (1) represents the reconstruction task of
VAE which can be decomposed as [27]:

𝐼 (Ã, X̃; 𝑧) = 𝐼 (Ã; 𝑧) + 𝐼 (X̃; 𝑧) − 𝐼 (Ã; X̃; 𝑧) (2)



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Wang et al.

Figure 3: The model architecture of the proposed PoGeVon.

where 𝐼 (Ã, X̃; 𝑧) represents the mutual information between the
partially observedNTS G̃ (i.e., the joint distribution of Ã and X̃) and
𝑧, while 𝐼 (Ã; X̃; 𝑧) is the High-order Mutual Information [27, 48]
which measures the shared information among multiple different
random variables (i.e., Ã, X̃, and 𝑧). It is worthy noting that when
Ã and X̃ are independent from each other (even given 𝑧), we have:

𝐼 (Ã, X̃; 𝑧) = 𝐻 (Ã, X̃) − 𝐻 (Ã, X̃ |𝑧)
= 𝐻 (Ã) + 𝐻 (X̃) − 𝐻 (Ã |𝑧) − 𝐻 (X̃ |𝑧) = 𝐼 (Ã; 𝑧) + 𝐼 (X̃; 𝑧)

(3)

where 𝐻 (·) is the entropy. Compared with Eq. (2), it is clear that
𝐼 (Ã; X̃; 𝑧) now equals to 0. Under such circumstances, i.e., no cor-
relation exists between features of any adjacent node pairs, the
objective in Eq. (1) becomes modeling time series features and
graph structures independently. However, in reality, this is often
not the case. Figure 2 demonstrates an illustrative example from the
AQ36 dataset [80] in which NTS imputation problem occurs when
monitor stations fail due to system errors and lose data as well
as connections with each other. To maximize Eq. (2), we further
decompose 𝐼 (Ã; X̃; 𝑧):

𝐼 (Ã; X̃; 𝑧) = 𝐼 (Ã; 𝑧) − 𝐼 (Ã; 𝑧 |X̃) = 𝐼 (X̃; 𝑧) − 𝐼 (X̃; 𝑧 |Ã) (4)

where the second equation holds because of symmetry [73]. Com-
bining Eq. (2) and Eq. (4), we can derive the objective term for the
decoder as:

2 · 𝐼 (Ã, X̃; 𝑧) = 𝐼 (Ã; 𝑧) + 𝐼 (X̃; 𝑧)︸               ︷︷               ︸
VAE

+ 𝐼 (X̃; 𝑧 |Ã) + 𝐼 (Ã; 𝑧 |X̃)︸                       ︷︷                       ︸
Conditional VAE

(5)

where the first two terms can be bounded by the objective for VAE
decoder as in [1]. The last two terms represent the objective of
conditional VAE (CVAE) since 𝐼 (X̃; 𝑧 |Ã) = 𝐻 (X̃ |Ã) −𝐻 (X̃ |Ã, 𝑧).
The first term 𝐻 (X̃ |Ã) on the right hand can be dropped because
it is independent from our model, and maximizing the second
term −𝐻 (X̃ |Ã, 𝑧) is essentially the same as optimizing the decoder
of CVAE with objective max𝑝 (X̃ |Ã). Similar analysis applies to
𝐼 (Ã; 𝑧 |X̃). Eq. (5) provies an important insight: we can use Ã and
X̃ as the conditions for each other’s predictions since imputation
over one of them might be instructive for the other.

To summarize, our analysis reveals that (1) when the features
of adjacent nodes are uncorrelated, we can impute the node time
series and graph adjacency independently (Eq. (3)); however, (2)
in real applications, node features and graph structure are often
correlated (e.g., Figure 2), and in such a scenario, there might be
a mutual reinforcing effect between node feature imputation and
graph adjacency imputation (Eq. (4)). Our analysis also provides

novel and critical clues that can guide the design of the encoder-
decoder framework for learning datasets with multi-modality such
as NTS. For the encoder, Eq. (5) suggests that the latent representa-
tion 𝑧 (i.e., the output of the encoder) should encode both the graph
adjacency information and the node feature information (i.e., the
VAE part of Eq. (5)) as well as the mutual interaction between them
(i.e., the CVAE part of Eq. (5)). For the decoder, we will present a
three-stage prediction method so that the (imputed) graph struc-
tures and the (imputed) node features can be used as each other’s
condition respectively (i.e., the CVAE part of Eq. (5)).

3.2 Encoder

The encoder aims to encode both the structural and the dynamic
information of NTS data. Existing message-passing based GNNs
typically only capture the local information from close neighbors.
However, long-distance information between nodes is important
in NTS data since the graph is constantly evolving and interactions
between nodes can occur at any time step. Therefore, to capture
this long-distance global information, we propose using position
embeddings with random walk with restart (RWR) [19, 59, 71, 72].
3.2.1 RWR-based Position Embeddings. For a graph𝐺𝑡 at time step
𝑡 , the relative position vector for all nodes w.r.t. one anchor node 𝑖
is computed by RWR as follows:

r𝑡,𝑖 = (1 − 𝑐)Â𝑡 r𝑡,𝑖 + 𝑐e𝑖 (6)

where Â𝑡 = (D−1
𝑡 A𝑡 )⊤ is the normalized adjacency matrix of 𝐺𝑡 ,

e𝑖 ∈ R𝑁 is a one-hot vector which only contains nonzero value
at position 𝑖 and 𝑐 is the restart probability. After reaching the
stationary distribution, we concatenate the position scores r𝑡,𝑖 ∈
R𝑁 of all the anchor nodes as the final position embeddings R𝑡 ∈
R𝑁×𝑁 , where 𝑁 is the number of nodes.

We next prove the expressive power of RWR-based position
embeddings with following proposition and theorem.

Proposition 3.1. Random walk with restarts (RWR) captures

information from close neighbors (local) and long-distance neighbors

(global) in graph learning.

Proof. See Appendix. □

The benefit of RWR-based position embeddings in temporal
graphs is summarized in Theorem 3.2 from the perspective of
message-passing based temporal graph networks (TGN) [54], which
is a general class of GNNs designed for handling temporal graphs.
It contains two main components:memory (through RNNs) for cap-
turing the dynamics of each node; aggregate and update (through
GNNs) for gathering topological information from neighbors.
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Theorem 3.2. Given a temporal graph G, TGN with RWR-based

node position embeddings 𝑔\ has more expressive power than regular

TGN 𝑓\ in node representation learning:D(𝑔(𝑢), 𝑔(𝑣)) ≥ D(𝑓 (𝑢), 𝑓 (𝑣))
where D(·, ·) measures the expressiveness by counting the distinguish-

able node pairs (𝑢, 𝑣) in G based on node representations.

Proof. See Appendix. □

Finally, to capture the dynamic information in NTS data, we
use a 2-layer gated recurrent unit (GRU) [10] as the encoder to
model 𝑞\ (𝑧 |X̃,M,R), where 𝑧 is the latent representation and
R = {R1, ...,R𝑇 } is the tensor of node position embeddings. For
each R𝑡 , instead of treating all the nodes as anchor nodes, usually
only a small subset of anchor nodes |𝑆 | = 𝐿 would be sufficient to
distinguish nodes from each other in practice [76]. MasksM and
position embeddings R are concatenated with the input X̃ at each
time step before feeding into the GRU.

3.3 Decoder

We design the decoder as a GRU with 3-stage predictions. We use
H𝑡 to denote node embedding matrix at time step 𝑡 andH to denote
node embedding tensor. Based on the analysis in Section 3.1, we
model the complementary relation between feature imputation
𝑝𝜙 (X̃ |Ã,M, 𝑧) and network imputation 𝑝𝛾 (Ã |M,R, 𝑧) at different
prediction stages in the decoder as follows.
3.3.1 First-stage Feature Prediction. In the first stage, we use a
linear layer to generate an initial prediction of the missing values
in the time series:

Ŷ1,𝑡 = Linear(H𝑡−1) (7)

where H𝑡−1 is the hidden representation of each node from the
previous time step and H0 is sampled from a normal distribution
𝑁 (0, 1/

√︁
𝑑ℎ) where 𝑑ℎ is the hidden dimension. Similar to [11], we

then use a filler operator to replace the missing values in the input
X̃𝑡 with Ŷ1,𝑡 to get the first-stage output O𝑡 :

O𝑡 = M𝑡 ⊙ X̃𝑡 + (1 −M𝑡 ) ⊙ Ŷ1,𝑡 (8)

3.3.2 Second-stage Link Prediction. Our second-stage prediction
imputes the missing weighted edges within graphs. O𝑡 is used
with the mask M𝑡 , the position embedding R𝑡 and H𝑡−1 to get the
embeddings of all nodes at timestep 𝑡 through a linear layer:

U𝑡 = Linear(O𝑡 ∥M𝑡 ∥R𝑡 ∥H𝑡−1) (9)

where ∥ is concatenation. We directly use the hidden states from
previous time step H𝑡−1 as the embeddings for those missing nodes
since no new features or graph structures of them are available at
time step 𝑡 . In NTS, observations are usually obtained by irregular
sampling and the imputation problem over them can occur at any
future step in real world problems. Being able to handle such un-
certainty and forecasting unseen graph structure/time series data
in the future time step are two key characteristics of an NTS impu-
tation model. Therefore, in order to capture the dynamics between
different timestamps and enhance the expressiveness of PoGeVon,
we also encode the time information with learnable Fourier fea-
tures based on Bochner’s theorem [66, 67], whose properties are
summarized in Proposition 3.3, as follows:

𝑓 (𝑡) =
√︂

1
𝑘
[cos(w1𝑡), sin(w1𝑡), ..., cos(w𝑘𝑡), sin(w𝑘𝑡)] (10)

where w1, ...,w𝑘 are learnable parameters.

Proposition 3.3. Time encoding function f(t) is invariant to time

rescaling and generalizes to any future unseen timestamps.

Proof. See [32, 67]. □

Then, we concatenate node embeddings with time encodings
through broadcasting as the input of a two-layer multi-layer per-
ceptron (MLP) to predict the missing edges:

Aout
𝑡 = MLP(U𝑡 ∥H𝑡−1∥ 𝑓 (𝑡)) (11)

The next step is to enhance node embeddings with updated graph
structures. The general class of message-passing neural networks
(MPNNs) [21] is used similar to the aggregate and update step in
TGN to capture the graph topological information, which can be
defined as:

Hgraph
𝑡 = MPNN(U𝑡 ,Aout

𝑡 ) (12)

whose detailed design can be found in Appendix.

3.3.3 Third-stage Feature Prediction. In the third-stage prediction,
we utilize the structural information Hgraph

𝑡 to make a fine-grained
imputation again over node features time series. Aiming to enhance
the semantics of the node representations, we apply a self attention
layer [60] to capture cross-node information in our third-stage pre-
diction, which helps to encode richer node interaction information
that is not captured in Hgraph

𝑡 . The latent node representations Z,
previous hidden state H𝑡−1, the structural representation Hgraph

𝑡

and the first stage output O𝑡 as well as the masks M𝑡 are all con-
catenated and processed by a self attention layer with an MLP to
get the final output imputation representations:

Hout
𝑡 = MLP(Attn(Z∥H𝑡−1∥Hgraph

𝑡 ∥O𝑡 ∥M𝑡 )) (13)

Then a two-layer MLP is used for the third-stage prediction:

Ŷ2,𝑡 = MLP(Hout
𝑡 ∥H𝑡−1∥Hgraph

𝑡 ) (14)

A filler operator similar to Eq. (8) is applied to get the imputation
output Xout

𝑡 from Ŷ2,𝑡 . Finally, a single layer GRU is used similar to
thememory step in TGN to update hidden representations based on
the latent node representation Z, the output of second-stage Xout

𝑡 ,
the maskM𝑡 and the structural representation HA

𝑡 for each node
and move on to the next time step:

H𝑡 = GRU(Z∥Xout
𝑡 ∥M𝑡 ∥Hgraph

𝑡 ) (15)

3.3.4 Bidirectional Model. Similar to [11], we extend our VAE
model to bidirectional by replicating the architecture to handle
both the forward and backward sequences. An MLP is used over
the output hidden representations from these two VAEs to produce
the final imputation output Ŷ:

Ŷ = MLP(Hout
𝑓

∥Hout
𝑏

∥Hgraph
𝑓

∥Hgraph
𝑏

∥H𝑓 ∥H𝑏 ) (16)

whereHout is the tensor of imputation representations from the
final stage prediction, 𝑓 and𝑏 stand for forward and backward direc-
tions respectively. Algorithm 1 summarizes the detailed workflow
of the proposed PoGeVon.



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Wang et al.

Algorithm 1 PoGeVon: Position-aware Graph Enhanced Varia-
tional Autoencoders
Input: A partially observed NTS: G(Ã, X̃) = {�̃�1, �̃�2, ..., �̃�𝑇 }.
Output: The predicted tensor X of node feature time series and

the predicted graph adjacency tensor A.
1: Generate node position embeddings R based on Eq. (6).
2: for 𝑒 = 1, 2, 3, ..., num_epochs do
3: Encode X̃𝑓 ,M𝑓 ,R𝑓 to get 𝑧𝑓 based on Section 3.2.
4: for 𝑡 = 1, 2, 3, ...,𝑇 (forward direction) do
5: Perform first-stage decoding based on Section 3.3.1.
6: Perform second-stage decoding based on Section 3.3.2.
7: Perform third-stage decoding based on Section 3.3.3.
8: end for

9: Encode X̃𝑏 ,M𝑏 ,R𝑏 to get 𝑧𝑏 based on Section 3.2.
10: for 𝑡 = 𝑇,𝑇 − 1, ..., 1 (backward direction) do
11: Perform first-stage decoding based on Section 3.3.1.
12: Perform Second-stage decoding based on Section 3.3.2.
13: Perform third-stage decoding based on Section 3.3.3.
14: end for

15: Generate final outputs Ŷ based on Eq. (16).
16: Update parameters \,𝛾, 𝜙 by optimizing the loss in Eq. (19).
17: end for

18: Obtain the predicted tensorX of node feature time series based
on Eq. (8) by replacing missing values in X̂ with Ŷ.

19: Obtain the predicted graph adjacency tensorA based on Eq. (8)
by replacing missing values in Â with Aout.

20: return the predicted tensor time series X and the predicted
tensor of graph adjacency A.

3.4 Objective and Training

The Evidence Lower Bound (ELBO) objective function of a vanilla
conditional VAE [12, 14] over missing data imputations can be
defined as:

ELBO(\, 𝜙) = E𝑞 [log𝑝𝜙 (X̃ |𝑧,M)]−
KL[𝑞\ (𝑧 |X̃,M)||𝑝𝜙 (𝑧)] ≤ log𝑝𝜙 (X̃ |M)

(17)

Our goal is to learn a good generative model of both the observed
multivariate node feature time series X̃ and the observed graph adja-
cency Ã. Thus, we can treat the position embeddings R as an extra
condition in addition to the maskM similar to [25]. This is because,
M andR are auxiliary covariates, and are given or can be generated
through deterministic functions based on Ã and X̃ respectively.
Therefore, it is more natural to maximize log𝑝 (X̃, Ã|M,R) as our
objective, which is summarized in the following lemma.

Lemma 3.4. Under the condition thatM and R are jointly inde-

pendent of the prior 𝑝 (𝑧): 𝑝 (𝑧) = 𝑝 (𝑧 |M,R), the new ELBO objective

of the proposed PoGeVon for the NTS imputation problem is:

ELBO
new (\,𝛾, 𝜙) = E𝑞 [log 𝑝𝜙 (X̃ |Ã,M, 𝑧)]

+ E𝑞 [log 𝑝𝛾 (Ã |M,R, 𝑧) − KL[𝑞\ (𝑧 |X̃,M,R)||𝑝𝜙 (𝑧)]]
(18)

where 𝛾 denotes parameters of the link prediction module.

Proof. The derivation of ELBOnew can be formulated as:

log𝑝 (X̃, Ã|M,R) = log
∫

𝑝 (X̃, Ã|M,R, 𝑧)𝑝 (𝑧)𝑑𝑧

= log
∫

𝑝 (X̃ |Ã,M,R, 𝑧)𝑝 (Ã |M,R, 𝑧)𝑝 (𝑧)𝑑𝑧

since the node position embedding R can be generated from
the observed graph adjacency Ã,

= log
∫

𝑝 (X̃ |Ã,M, 𝑧)𝑝 (Ã |M,R, 𝑧)𝑝 (𝑧)𝑞(𝑧 |X̃,M,R)
𝑞(𝑧 |X̃,M,R)

𝑑𝑧

= logE𝑞 [𝑝 (X̃ |Ã,M, 𝑧)𝑝 (Ã |M,R, 𝑧) 𝑝 (𝑧)
𝑞(𝑧 |X̃,M,R)

]

≥ E𝑞 [log 𝑝 (X̃ |Ã,M, 𝑧)] + E𝑞 [log𝑝 (Ã |M,R, 𝑧)]
− KL[𝑞(𝑧 |X̃,M,R)||𝑝 (𝑧)] □

This lemma generalizes the ELBO in Eq. (17) to the multi-task learn-
ing setting which ensures the learning objective of the proposed
PoGeVon is consistent with our analysis in Section 3.1. That is,
ELBOnew corresponds to Eq. (1) bymodeling dependencies between
the observed node time series X and observed graph adjacency A
similar to Eq. (5).

We use a similar strategy as in [12, 50] to maximize ELBOnew by
training our model over observed data and infer missing ones based
on 𝑝 (X|X̃) ≈

∫
𝑝 (X|𝑧)𝑞(𝑧 |X̃)𝑑𝑧. We (1) use the mean absolute

error (MAE) as the error function for the feature imputation and (2)
use the Frobenius norm between the predicted adjacency matrices
and the observed adjacency matrices as the link prediction loss. The
model is trained by minimizing the following loss function which
is composed of errors of all three stages:

L = 𝐿(Ŷ𝑡 :𝑡+Δ𝑡 , X̃𝑡 :𝑡+Δ𝑡 ,M𝑡 :𝑡+Δ𝑡 ) + 𝛽 · KL𝑓 + 𝛽 · KL𝑏︸                                                           ︷︷                                                           ︸
First and third terms in ELBOnew

(19)

+ 𝐿(O𝑓 ,𝑡 :𝑡+Δ𝑡 , X̃𝑡 :𝑡+Δ𝑡 ,M𝑡 :𝑡+Δ𝑡 ) + 𝐿(O𝑏,𝑡 :𝑡+Δ𝑡 , X̃𝑡 :𝑡+Δ𝑡 ,M𝑡 :𝑡+Δ𝑡 )︸                                                                              ︷︷                                                                              ︸
Error for the 1st stage prediction

+ 𝛾 · ∥Ã𝑓 ,𝑡 :𝑡+Δ𝑡 − Aout
𝑓 ,𝑡 :𝑡+Δ𝑡 ∥𝐹 + 𝛾 · ∥Ã𝑏,𝑡 :𝑡+Δ𝑡 − Aout

𝑏,𝑡 :𝑡+Δ𝑡 ∥𝐹︸                                                                          ︷︷                                                                          ︸
Error for the 2nd stage prediction (i.e., second term in ELBOnew)

+ 𝐿(Xout
𝑓 ,𝑡 :𝑡+Δ𝑡 , X̃𝑡 :𝑡+Δ𝑡 ,M𝑡 :𝑡+Δ𝑡 ) + 𝐿(Xout

𝑏,𝑡 :𝑡+Δ𝑡 , X̃𝑡 :𝑡+Δ𝑡 ,M𝑡 :𝑡+Δ𝑡 )︸                                                                              ︷︷                                                                              ︸
Error for the 3rd stage prediction

where 𝛽 is the weight for KL divergence similar to [24] and 𝛾 is the
weight for the 2nd stage prediction. The element wise error function
𝐿(Xpred,Xlabel,M) outputs the average error by calculating the
inner product between mask tensor M and |Xlabel − Xpred |. The
loss L is optimized through each sample in the dataset which is a
sliding window (𝑡 : 𝑡 + Δ𝑡) of NTS data (i.e., G̃𝑡 :𝑡+Δ𝑡 ).

3.5 Complexity Analysis

The computational complexity of PoGeVon can be analyzed through
the following aspects. First, calculating the position embedding R
has the complexity O(𝑇 · 𝐸 · log 1

𝜖 ) [61] where 𝐸 is the average
number of edges and 𝜖 is the absolute error bound for the power
iteration of RWR. Second, with a standard bidirectional VAE based
on GRU, MPNN increases the complexity by O(𝐸) with sparse ma-
trix multiplications at each time step. Third, the self-attention used
in the third-stage decoder has the complexity O(𝑁 2). There are
several ways to reduce the overall time complexity. For example,
most of the computations can be parallelized. One computational
bottleneck lies in the computation of self-attention. The existing
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techniques for efficient attentions [57] can be readily applied in the
proposed PoGeVon, such as Linformer [63] which uses low-rank
projections to make the cost of the attention mechanism O(𝑁 ) and
Reformer [37] which applies locality sensitive hashing to reduce
the complexity of attention to O(𝑁 · log𝑁 ).

4 EXPERIMENT

We apply the proposed PoGeVon to the networked time series
imputation task, and evaluate it in the following aspects:

• Q1. How effective is PoGeVon for networked time series
imputation?

• Q2. To what extent does our method benefit from different
components of the model?

4.1 Experimental Setup

4.1.1 Datasets. We evaluate the proposed PoGeVon model on five
real-world datasets, and the statistics of all the datasets are listed
in Table 2.
Table 2: Statistics of the datasets. Entity numbers of PeMS*

datasets refer to the original number of sensors/stations in

the corresponding dataset and only part of them are used to

build the graphs.

Dataset # of
entity

# of
nodes

average # of
edges

time length

COVID-19 50 50 1344.75 346

AQ36 36 36 341.57 8759

PeMS-BA 1632 64 675.45 25920

PeMS-LA 2383 64 1095.54 25920

PeMS-SD 674 64 1295.11 25920

• COVID-19: A dataset of COVID-19 infection cases and
deaths in 50 states in USA from 01/21/2020 to 12/31/2020 [31].
Similar to [30], we choose infection cases of states as the
time series data X and use mobility of people across differ-
ent states to model the spatial relationship A between them.
Then, we apply a Radial Basis Function (RBF) 𝑓 (𝑢, 𝑣, 𝑡) =

exp(− | |𝑥𝑢𝑡 −𝑥𝑣
𝑡 | |2

2𝜎2 ) [8] to capture the dynamics and generate
the graph sequence. Finally, we simulate the missing edges
in the NTS imputation problem by masking edges when one
of its end nodes contains missing features. Specifically, an
edge weight 𝑤𝑢,𝑣

𝑡 between nodes 𝑢 and 𝑣 at time 𝑡 can be
defined as:

𝑤
𝑢,𝑣
𝑡 =


𝑤𝑢,𝑣 if A[𝑢, 𝑣] ≠ 0 and 𝑓 (𝑢, 𝑣, 𝑡) > 𝑘

and𝑚𝑢
𝑡 = 1,𝑚𝑣

𝑡 = 1.
0 otherwise.

(20)

where 𝑘 is the positive threshold for graph dynamics and we
choose 𝑘 = 0.3 for COVID-19 dataset. We randomly mask
out 25% of the node features in this dataset, and split the
time axis to 70% for training, 10% for validation and 20% for
test respectively.

• AQ36: A dataset of AQI values of different air pollutants
collected from various monitor stations over 43 cities in
China [80]. Following [5, 11], we use the reduced version of

the dataset which contains 36 nodes (AQ36) and pick the last
four months as the test data. To construct the static graph
𝐺 (A,X), we use the thresholded Gaussian kernel from [56]
to get the pairwise distances A[𝑢, 𝑣] between stations 𝑢 and
𝑣 as the edge weight. The graph sequence is constructed
using the similar method as Eq. (20) over normalized time
series features and the threshold 𝑘 is set to 0.8. We use the
same mask setting as [74] which simulates the true missing
data distribution.

• PeMS-BA/PeMS-LA/PeMS-SD Three datasets contain traf-
fic statistics based on the Caltrans Performance Measure-
ment System (PeMS) [6], which cover the freeway system
in major areas of California. We collect 5-minute interval
traffic flow data from 3 different stations 4, 7 and 11 between
01/01/2022 and 03/31/2022, which represent the traffic infor-
mation from Bay Area, Los Angeles and San Diego respec-
tively. For each dataset, we pick 64 sensors with the largest
feature variance, and use their latitude and longitude values
to calculate pairwise distances to build the static graph. We
only keep edges with weight within certain threshold, and
we use 15 miles for PeMS-BA/PeMS-LA and 10 miles for
PeMS-SD. The graph sequence is constructed using the sim-
ilar method as the AQ36 dataset, and the threshold 𝑘 is set to
0.8. We use similar masking settings as COVID-19 dataset.

The missing rate of AQ36’s time series features is about 13.24%,
while for COVID-19 dataset and all the traffic datasets, the time
series features have 25% missing values. Based on Eq. (20), the
missing rates of edges for AQ36 is 28.06%, for COVID-19 is 43.23%,
and for PEMS-BA/PEMS-LA/PEMS-SD are 43.75%/43.74%/43.71%
respectively.

To be consistent with the dataset settings in previous works
such as GRIN [11], we use the following window length to train the
models: (i) 14 for COVID-19 dataset which corresponds to 2 weeks,
(ii) 36 for AQ36 dataset which corresponds to 1.5 days and (iii) 24
for all the traffic datasets which corresponds to 2 hours of data.

4.1.2 Baselines. We compare the proposed PoGeVon model with
following baselines for the time series imputation task. All the
methods are trained with NVIDIA Tesla V100 SXM2 GPU.

(1) Mean. Impute with node level feature average along the
sequence.

(2) Matrix Factorization (MF). Matrix factorization of the in-
complete matrix with rank 10.

(3) MICE [64]. Multiple imputation by chained equations. The
algorithm fills the missing values iteratively until conver-
gence. We use 10 nearest features and set the maximum
iterations to 100.

(4) BRITS [5]. BRITS has the similar bidirectional recurrent
models as ours for time series imputation. It learns to impute
only based on the time series features and does not consider
the spatial information of the underlying graphs.

(5) rGAIN [11]. AGAN based imputationmodel which is similar
to SSGAN [49]. rGAIN can be regarded as an extension of
GAIN [75] with bidirectional encoder and decoder.

(6) GRIN [11]. GRIN is a state-of-the-art model for MTS im-
putation with the relational information from a static and
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Table 3: Performance comparison over COVID-19 and AQ36 datasets. Smaller is better.

COVID-19 AQ36

Models MAE MSE MRE MAE MSE MRE

Mean 3.081 ±0.000 10.707 ±0.000 0.284 ±0.000 62.299 ±0.000 6525.709 ± 0.000 0.835 ±0.000

MF 0.276 ±0.026 0.165 ±0.025 0.026 ±0.002 39.582 ±0.189 4545.596 ± 61.411 0.531 ±0.002

MICE 0.077 ±0.005 0.013 ±0.002 0.007 ±0.000 38.889 ±0.268 4314.435 ± 20.617 0.521 ±0.003

BRITS 0.386 ±0.006 0.293 ±0.009 0.036 ±0.001 23.393 ±0.802 1276.226 ±102.916 0.314 ±0.011

rGAIN 0.579 ±0.069 0.571 ±0.106 0.055 ±0.006 25.032 ±1.426 1358.134 ±152.361 0.335 ±0.019

GRIN 0.319 ±0.038 0.165 ±0.040 0.029 ±0.004 29.420 ±0.231 2050.726 ± 56.028 0.394 ±0.003

NET3 0.547 ±0.004 0.682 ±0.006 0.051 ±0.000 34.755 ±0.497 2473.718 ± 37.461 0.466 ±0.007

PoGeVon 0.007 ±0.001 0.000 ±0.000 0.001 ±0.000 19.494 ±1.101 1213.474 ±125.529 0.261 ±0.015

Table 4: Performance comparison over PeMS-BA, PeMS-LA and PeMS-SD datasets. Smaller is better.

PeMS-BA PeMS-LA PeMS-SD

Models MAE MSE MRE MAE MSE MRE MAE MSE MRE

Mean 192.047 ±0.000 47504.159 ± 0.000 0.474 ±0.000 216.681 ±0.000 62664.657 ± 0.000 0.406 ±0.000 208.192 ±0.000 55780.002 ± 0.000 0.529 ±0.000

MF 57.265 ±1.148 8091.407 ±185.123 0.141 ±0.003 77.339 ±0.699 15202.678 ±156.348 0.145 ±0.001 45.811 ±0.318 6044.345 ± 72.976 0.117 ±0.001

MICE 50.861 ±0.765 6724.148 ±109.829 0.126 ±0.002 64.018 ±1.015 10822.355 ±405.410 0.120 ±0.002 38.978 ±1.036 4771.186 ± 92.335 0.100 ±0.003

BRITS 30.274 ±0.095 2942.411 ± 16.511 0.075 ±0.000 36.921 ±0.133 3681.595 ± 21.635 0.069 ±0.000 21.232 ±0.059 1563.234 ± 28.309 0.054 ±0.000

rGAIN 38.862 ±0.752 3422.914 ± 61.281 0.096 ±0.002 49.611 ±1.083 5533.964 ±234.335 0.093 ±0.002 33.212 ±1.475 2341.466 ± 98.314 0.085 ±0.004

GRIN 30.057 ±1.073 1922.072 ± 74.327 0.074 ±0.003 47.835 ±2.059 4561.512 ±298.533 0.090 ±0.004 41.001 ±1.543 3000.012 ±201.018 0.105 ±0.004

NET3 35.671 ±0.111 2735.574 ± 6.138 0.009 ±0.000 37.652 ±0.113 3416.784 ± 6.765 0.071 ±0.000 34.111 ±0.184 2487.581 ± 9.798 0.087 ±0.000

PoGeVon 22.194 ±0.046 1248.681 ± 4.297 0.055 ±0.000 23.905 ±0.245 1714.962 ± 31.035 0.045 ±0.000 18.990 ±0.112 951.559 ± 8.264 0.048 ±0.000

accurately known graph, which uses MPNN to build a spatio-
temporal recurrent module and solves the problem in a bidi-
rectional way.

(7) NET3 [28]. NET3 is a recent work focusing on tensor time
series learning and assumes that the tensor graphs are fixed
and accurately known.

NTS imputation (i.e., Problem 1) also aims to solve the link predic-
tion problem. We compare the performance of our method with
following baselines:

(1) VGAE [36]. Vanilla variational graph autoencoder is the first
work that brings VAE to graph learning, and has competitive
performance on link prediction task over static graphs.

(2) VGRNN [23]. Variational graph recurrent neural networks
extends VGAE to handle temporal information with the help
of RNNs, and is a powerful baseline for the link prediction
task on dynamic graphs.

4.1.3 Metrics. We use mean absolute error (MAE), mean squared

error (MSE) and mean relative error (MRE) to evaluate the imputa-
tion performance of all models over missing features. For the link
prediction task, we use the Frobenius norm as the metric since all
the edges are weighted. All the experiments are run with 5 different
random seeds and the results are presented as mean ± standard
deviation (std).
4.2 Time Series Imputation Task

Empirical results from Table 3 and Table 4 demonstrate that the pro-
posed PoGeVon outperforms all the baselines over the time series
missing values prediction task in the NTS imputation problem. In
particular, PoGeVon achieves more than 10% improvement on all
the datasets compared with the best baselines. Especially, PoGeVon
has significant improvements over all the baselines over COVID-19
dataset where other neural network based models have even worse

performance than traditional time series imputation methods such
as MF and MICE. It is worth noting that, although equipped with
modules to handle topological information from graphs, GRIN and
NET3 are less competitive than PoGeVon when the graph is con-
stantly changing and contains missing edges. On the AQ36 dataset
and the PeMS-SD dataset, they bear worse performance compared
to BRITS and rGAIN, which do not leverage any topological in-
formation. PoGeVon outperforms BRITS and rGAIN by at least
12.92% and 10.55% on these two datasets respectively, which fur-
ther indicates the effectiveness of our method. The main reason
PoGeVon fluctuates (with a large std) on AQ36 dataset compared
with traffic datasets is that AQ36 has fewer training samples (time
steps), which brings more uncertainty for the model and results in
larger differences of performances using different random seeds.

4.3 Link Prediction Task

Table 5: Performance comparison of the link prediction task

in NTS imputation. Smaller is better.

Models AQ36 PeMS-BA PeMS-LA PeMS-SD

VGAE 134.42 ±0.11 431.94 ±2.31 404.17 ±1.76 399.78 ±1.29

VGRNN 133.92 ±0.29 428.82 ±0.01 402.30 ±0.90 398.81 ±0.01

PoGeVon 95.42 ±1.80 148.44

±0.31
168.05

±0.31
185.86

±0.15

VGAE and VGRNN were originally designed for link prediction
over unweighted graphs. However, all the graphs are weighted in
our NTS imputation settings, and thus, we modify these models
correspondingly and apply the same Frobenius loss function we
use in PoGeVon to train them. All the results are listed in Table 5.
Both baselines have relatively worse performance compared to
PoGeVon in all the datasets, and even using RNNs, VGRNN only



Networked Time Series Imputation via Position-aware Graph Enhanced Variational Autoencoders KDD ’23, August 6–10, 2023, Long Beach, CA, USA

gains minor improvement over VGAE. This indicates that both
VGAE and VGRNN may not be able to handle the link prediction
task over weighted dynamic graphs very well.

4.4 Ablation Studies

Table 6: Ablation study of PoGeVon over AQ36 dataset on

time series feature imputation. Smaller is better.

Models MAE MSE MRE

PoGeVon 19.49

±1.10
1213.47

±125.53
0.26

±0.02

change RWR to SPD 21.98
±1.55

1309.55
±199.24

0.33
±0.02

w/o link prediction in 2nd stage 28.71
±3.38

2130.46
±417.45

0.38
±0.05

w/o self-attention in 3rd stage 23.40
±1.00

1576.06
±194.45

0.31
±0.01

To evaluate the effectiveness of different components of our pro-
posed method, we compare PoGeVon with following variants: (1)
Replace RWR node position embeddings with the shortest path
distance (SPD) based node embeddings by calculating the distance
between each node with anchor nodes. (2) Remove the link pre-
diction module in the 2nd stage prediction. (3) Remove the self-
attention module in the 3rd stage prediction by replacing it with a
linear layer. The results of the ablation study over AQ36 dataset are
shown in Table 6. As we can see, the proposed method PoGeVon
indeed performs the best which corroborates the necessity of all
these components in the model.

5 RELATEDWORK

In this section, we review the related works which can be cat-
egorized into two groups, including (1) multivariate time series
imputation and (2) GNNs with relative position encodings.
Multivariate Time Series Imputation. In addition to traditional
methods such as ARIMA [2] and K-Nearest Neighbors (KNN) [7],
deep learning models are widely adopted in recent years to solve
the MTS imputation problem. BRITS [5] is one of the most repre-
sentative methods which uses bidirectional RNNs. There also exist
a wide range of methods using deep generative models such as
generative adversarial nets (GAN) [22] and VAE [34]. GAIN [75] is
one of the earliest methods that use GAN to impute missing data,
and later [45] applies GAN to the multivariate time series setting
based on 2-stage imputation. E2GAN [46] is an end-to-end GAN
and uses the noised compression and reconstruction strategy to
generate more reasonable imputed values compared to previous
works. SSGAN [49] proposes a novel method based on GAN to han-
dle missing data in partially labeled time series data. VAE is used
in GP-VAE [17] to solve the MTS imputation task with Gaussian
process as the prior.

Other works handle MTS imputation problem from the perspec-
tive of spatial-temporal modeling, which takes the advantage of
entities relations from the underlying graph. [4] is the first trial
of using matrix factorization algorithm to recover missing values
over MTS data with graph structures. More recently, GNNs have
been used to capture the topological information in the MTS data.

GRIN [11] proposes a novel bidirectional message passing RNN
with a spatial decoder to handle both the spatial and temporal
information. SPIN [47] uses sparse spatiotemporal attention to cap-
ture inter-node and intra-node information for predicting missing
values in MTS. NET3 [28] generalizes the problem to tensor time
series where multiple modes of relation dependencies exist in the
time series. It introduces a tensor GCN [35] to handle the tensor
graphs and then proposes a tensor RNN to incorporate the temporal
dynamics. One common limitation of all these methods is that they
either ignore the topological information from graph or assume the
graph is fixed and accurately known.
GNNs with Relative Position Encodings. The expressive power
of message-passing based GNNs has been proved to be bounded
by 1-Weisfeiler-Lehman test (1-WL test) in [68]. Many follow-up
works have been done to improve the expressive power of GNNs
which go beyond 1-WL test, and position-aware graph neural net-
works (P-GNNs) [76] is one of them. P-GNNs randomly picks sets
of anchor nodes and learn a non-linear distance-weighted aggre-
gation scheme over these anchor sets for each node. This relative
position encodings for nodes are proved to be more expressive
than regular GNNs. Distance Encoding [39] uses graph-distance
measures between nodes as extra features and proves that it can dis-
tinguish node sets in most regular graphs in which message-passing
based GNNs would fail. [15] proposes a novel module for learnable
structural and positional encodings (LSPE) along with GNNs and
Transformers [60], which generates more expressive node embed-
dings. Recently, PEG [62] is introduced for imposing permutation
equivariance and stability to position encodings, which uses sepa-
rate channels for node features and position features. Compared
with these existing methods, our proposed RWR-based position
embedding could capture more topological information from the
entire graph, as our analysis in Section 3.2.1 shows.

6 CONCLUSION

In this paper, we focus on solving networked time series impu-
tation problem, which has two main challenges: (1) the graph is
dynamic and missing edges exist, and (2) the node features time
series contain missing values. To tackle these challenges, we pro-
pose PoGeVon, a novel VAE model utilizing specially designed
RWR-based position embeddings in the encoder. For the decoder,
we design a 3-stage predictions to impute missing values in both fea-
tures and structures complementarily. Experiments on a variety of
real-world datasets show that PoGeVon consistently outperforms
strong baseline methods for the NTS imputation problem.
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A APPENDIX

In the appendix, we present the additional details of PoGeVon
including

• Proofs of Proposition 3.1 and Theorem 3.2 in Section A.1 and
Section A.2 respectively.

• Additional details of components in PoGeVon is introduced
in Section A.3.

• Reproducibility and parameter settings of baselines and the
proposed PoGeVon are listed in Section A.4.

• Additional experiments such as visualization for prediction
and sensitivity analysis are given in Section A.5.

• Section A.6 discusses the limitations of our implementations
of PoGeVon and propose some potential future works based
on NTS imputation.

A.1 Proof Proposition 3.1

We prove Proposition 3.1 by analyzing the properties of RWR.
Proposition. Random walk with restarts (RWR) captures in-

formation from close neighbors (local) and long-distance neighbors

(global) in graph learning.

Proof. Based on Eq. (6), the closed form solution for RWR can
be derived as: r𝑖 = 𝑐 · (I − (1 − 𝑐) · Â)−1e𝑖 , where I is the identity
matrix. We could also solve this equation by power iterations: (I −
(1 − 𝑐) · Â)−1 ≈ ∑∞

𝑡=0 ((1 − 𝑐) · Â)𝑡 . First of all, as the power term 𝑡

goes to infinity, the position embedding R can indeed capture global
information of graph. Second, the restart probability 𝑐 ensures nodes
close to anchor nodes have larger values than those farther away,
which encodes the local information of graph.

Remark. Proposition 3.1 holds with the assumption that the graph
is connected. When graph is not connected, with proper choice
of a set of anchor nodes that cover all the connected components,
RWR is able to global information within each components rather
than the entire graph. An alternative to generate node position
embeddings is using RWR from each node similar to [15] to get the
landing probability of a node to itself for multiple steps. However,
this usually increases the complexity when having a large graph and
still faces similar issues as ours when graph is less connected. □

A.2 Proof of Theorem 3.2

To prove Theorem 3.2, we first introduce the following proposition.

Proposition A.1. For any random variables 𝐴, 𝐵, and 𝐶 , the

following inequality of the mutual information 𝐼 (·; ·) holds [53]:

𝐼 (𝐴, 𝐵;𝐶) ≥ 𝐼 (𝐴;𝐶) (21)
Proof. Based on the chain rule of mutual information, we have:

𝐼 (𝐴, 𝐵;𝐶) = 𝐻 (𝐴, 𝐵) − 𝐻 (𝐴, 𝐵 |𝐶)
= 𝐻 (𝐴) + 𝐻 (𝐵 |𝐴) − 𝐻 (𝐴|𝐶) − 𝐻 (𝐵 |𝐴,𝐶)
= 𝐼 (𝐴;𝐶) + 𝐼 (𝐵;𝐶 |𝐴)

where 𝐻 (𝐴) is the marginal entropy, 𝐻 (𝐴|𝐶) is the conditional en-
tropy and𝐻 (𝐴, 𝐵) is the joint entropy. Since the mutual information
𝐼 (𝐵;𝐶 |𝐴) ≥ 0, we can conclude that 𝐼 (𝐴, 𝐵;𝐶) ≥ 𝐼 (𝐴;𝐶). □

Now we can prove Theorem 3.2 as:
Theorem. Given a temporal graph G, TGN with RWR-based node

position embeddings 𝑔\ has more expressive power than regular TGN

𝑓\ in node representation learning: D(𝑔(𝑢), 𝑔(𝑣)) ≥ D(𝑓 (𝑢), 𝑓 (𝑣))

where D(·, ·) measures the expressiveness by counting the distinguish-

able node pairs (𝑢, 𝑣) in G based on node representations.

Proof. It is natural to see that 𝑔\ has at least same expressive
power as 𝑓\ since we add additional information with the positional
embeddings for each node. By setting all the parameters of 𝑔\ that
handle such positional embeddings to zero, we will have a regular
TGN model same as 𝑓\ .

To prove that why the additional information brought by node
position embeddings is useful for node representation learning, we
provide following analysis with the help of Proposition A.1. Regular
TGN only encodes topologically local information within 𝑞-hop
neighbors and 𝑞 usually is a small number because of the over-
smoothing problem [40], we denote the random variable for 𝑓\ ’s
node representations as 𝑋𝑙𝑜𝑐𝑎𝑙 . Based on Proposition 3.1, we know
that the random variable for𝑔\ ’s node representations𝑋𝑙𝑜𝑐𝑎𝑙+𝑔𝑙𝑜𝑏𝑎𝑙
follows the joint distribution of both local and global topological
information. The objective of a node representation learning task
over graph G can be denoted as max 𝐼 (𝑋 ;𝑌 ) where 𝑌 is the random
variable follows label distributions [76]. This derivation can be
obtained from Information Bottleneck we discussed in Section 3.1
without the constraints term. Therefore, based on Proposition A.1,
we have 𝐼 (𝑋𝑙𝑜𝑐𝑎𝑙+𝑔𝑙𝑜𝑏𝑎𝑙 ;𝑌 ) ≥ 𝐼 (𝑋𝑙𝑜𝑐𝑎𝑙 ;𝑌 ) which denotes that 𝑔\
has more expressive power than 𝑓\ . □

A.3 Additional Details over PoGeVon

The message-passing neural network (MPNN) used in PoGeVon is
defined as:

MPNN(𝐹𝑢 , 𝐹𝑚, d𝑡,𝑖 ,A) = 𝐹𝑢 (d𝑡,𝑖 ,
∑︁

𝑗∈N(𝑖 )
𝐹𝑚 (h𝑡,𝑖 , d𝑡, 𝑗 , 𝑒𝑖, 𝑗 )) (22)

where 𝐹𝑢 and 𝐹𝑚 are update and message functions with learnable
parameters, d𝑡,𝑖 is the node representation for node 𝑖 at time step 𝑡 ,
𝑒𝑖, 𝑗 is the edge weight between node 𝑖 and 𝑗 , and N(𝑖) represents
node 𝑖’s neighbors. The two-layer MPNNs with skip connection
used in PoGeVon can be defined as:

H1,𝑡 = MPNN(𝐹 1
𝑢 , 𝐹

1
𝑚,U𝑡 ,Aout

𝑡 )
H2,𝑡 = MPNN(𝐹 2

𝑢 , 𝐹
2
𝑚,H𝑡,1,Aout

𝑡 )

Hgraph
𝑡 = H1,𝑡 ⊕ H2,𝑡

(23)

where ⊕ is the element-wise addition.

A.4 Reproducibility

We introduce the detailed parameter settings of our models as well
as baselines in this subsection. For PoGeVon, the restart probability
𝑐 of RWR for position embeddings is set to the commonly used 0.15,
and we picked the number of anchor nodes as 𝐿 = log2 (𝑁 ). We set
the hidden dimension to be 64, 𝛽 to be 0.2 and 𝛾 to be 0.01.

All the experiments are based on codes from a open source
library2 [55] and those provided by corresponding authors. We
modify their implementations for the NTS imputation problem and
the details of parameter settings are listed as follows: for the param-
eters for each baseline model in the time series feature imputation,
we refer to previous works for their settings [5, 11]. For BRITS3, we
use the same hidden dimension as [5] for AQ36 dataset, and for the
2https://github.com/iskandr/fancyimpute
3https://github.com/caow13/BRITS
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traffic datasets, the hidden size is set to 256 which is aligned with
the setting used in PeMS data in [11]. For rGAIN, we follow the
exact same setting as in [11, 47] in which we use 64 as the hidden
size for AQ36 dataset and 256 for traffic datasets. For GRIN4, we use
the same hidden size for AQ36 as [11], while using 80 for the traffic
datasets since they are much larger than AQ36. As for the hidden
dimension of NET3 5, we use 128 for AQ36 dataset and 256 for
traffic datasets. For COVID-19 dataset, we use the same parameters
settings of traffic datasets for all the models .

For VGAE and VGRNN in the link prediction task in NTS impu-
tation, we use hidden size 256/128 for the AQ36 and 320/150 for the
traffic datasets respectively.

We train all the models using PyTorch [52] with Adam optimizer
[33], learning rates are set to be 0.001/0.01 for time series feature
imputation and link prediction baselines respectively with cosine
annealing scheduler [44] to adjust the values dynamically. The
batch sizes are all set to 32 and we use validation dataset for early
stopping. The codes of PoGeVon will be released upon acceptance.

A.5 Additional Experiments

A.5.1 Visualization of Prediction. The prediction results of differ-
ent baselines over PeMS-LA with 50% missing rates over test data
can be found in Figure 4. It is clear that PoGeVon can achieve better

Figure 4: Different models’ predictions of traffic flow in sen-

sor 23 and 34 from PeMS-LA dataset. Best viewed in color.

predictions results compared with other baselines. In particular,
GRIN and NET3 sometimes suffer a lot from fluctuations due to
the missing edges in the NTS data, which result in poor perfor-
mance compared to our proposed PoGeVon. Besides, we can see
that PoGeVon can have finer predictions compared with all the
baselines when there exist abrupt change of data values which also
4https://github.com/Graph-Machine-Learning-Group/grin
5https://github.com/baoyujing/NET3

has high missing rates (e.g., data from time step 60 to 65 in the
figure of prediction of sensor 34).
A.5.2 Sensitivity Analysis. We conduct sensitivity analysis to study
the effect brought by increasing the masking rates. We consider the
following mask rates: 15%, 25%, 35%, 45%. In order to keep a reason-
able edge missing rate, for each edge with either end node being
masked, they have 70% of chance being masked instead of using the
setting from Eq. (20). The results are shown in Figure 5, in which

Figure 5: Sensitivity analysis for time series imputation with

different masking rates on the traffic dataset. Lower is better.

Best viewed in color.

the error bar demonstrates the standard deviation of MAE over 5
runs with different random seeds. The proposed PoGeVon consis-
tently outperforms all the baselines in these settings which further
demonstrates the effectiveness and robustness of our method.

A.6 Limitations and Future Works

One limitation of the proposed PoGeVonmodel lies in its quadratic
complexity O(𝑁 2) due to the self-attention module. As we have
discussed in Section 3.5, we can reduce this complexity to either
O(𝑁 ) by Linformer [63] or O(𝑁 log𝑁 ) by Reformer [37]. Another
limitation lies in the potential negative transfer effect, which might
happen when negative correlation exists between the time series of
adjacent node pairs. Under such circumstances, directly applying
multi-task learning framework in PoGeVon might hurt the perfor-
mance of NTS imputation. A possible solution is to resort to GNNs
designed for graphs with heterophily [9, 43, 79, 81] in the decoder
of the proposed PoGeVon. There are several interesting aspects
that are worth future study, including (1) generalizing the proposed
PoGeVon for detecting anomalies on NTS, forecasting NTS [29, 65]
and assisting temporal graphs analysis [18, 20]; (2) applying it to
temporal knowledge graph completion [26] and alignment [70] as
well as dynamic recommendations [41].
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