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Diffusion on Graphs
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• At time 𝑡 = 0, only one node was infected.
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Example: Disease Contagion

• At time 𝑡 = 0, only one node was infected.
• At time 𝑡 = 1, a neighbor got infected, but the other did not.
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Example: Disease Contagion

• At time 𝑡 = 0, only one node was infected.
• At time 𝑡 = 1, a neighbor got infected, but the other did not.
• At time 𝑡 = 2, two nodes got infected, and an infected node recovered.
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Example: Disease Contagion

• At time 𝑡 = 0, only one node was infected.
• At time 𝑡 = 1, a neighbor got infected, but the other did not.
• At time 𝑡 = 2, two nodes got infected, and an infected node recovered.
• At time 𝑡 = 3, a new node got infected, and one more node recovered.
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Problem Definition

• Problem (DASH): Reconstructing Diffusion history from A single SnapsHot.
• Input: (i) graph 𝒱, ℰ ; (ii) timespan 𝑇 of interest;

(iii) final snapshot 𝒚' ∈ 𝒳𝒱; (iv) initial distribution 𝑃 𝒚) .
• Output: reconstructed complete diffusion history )𝒀 = ,𝒚), … , ,𝒚'*+, 𝒚' , ∈ 𝒳𝒯×𝒱.

ØWe do not assume knowing true diffusion parameters.
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Challenges of the DASH Problem

8

C1: Ill-posedness
Need appropriate inductive bias

C2: Explosive search space
Exponentially many possibilities

C3: Scarcity of training data
Few history data in practice

…

Unavailable



Previous Methods & Their Limitations

• Supervised time series imputation
(e.g., [1, 2])
ØImpractical due to the scarcity of

training data.

• Maximum likelihood estimation (MLE;
e.g., [3, 4])
ØSensitive to estimation error of diffusion

parameters (our Theorems 1 & 2).
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Summary of Main Results
ØTheoretical insights: Fundamental limitation of the MLE formulation.

• Theorems 1 & 2 ⟹ Unavoidable estimation error of diffusion parameters.
• Theorem 3 ⟹ The MLE formulation is sensitive to that estimation error.

ØProblem formulation:
• A novel barycenter formulation based on hitting times.
• Provably stable against estimation error of diffusion parameters.

ØProposed method: DIffusion hiTting Times with Optimal proposal (DITTO).
• Reducing the problem to estimating posterior expected hitting times via M–H MCMC;
• Using a GNN to learn an optimal proposal to accelerate convergence of M–H MCMC.

GNN = Graph Neural Network
M–H MCMC = Metropolis–Hastings Markov Chain Monte Carlo 10
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NP-Hardness of Diffusion Parameter Estimation
• To estimate diffusion parameters 𝜷, a conventional approach is MLE:

max
!𝜷
𝑃!𝜷 𝒚# . ⋆

• Theorem 1 (informal): Computing the probability 𝑃!𝜷 𝒚# is NP-hard.

vThink deeper: Is there an algo for /𝜷 MLE without computing 𝑃!𝜷 𝒚# ?

• Theorem 2 (informal): Diffusion parameter MLE ⋆ is NP-hard.

⟹ Implication: Estimation error of 𝜷 is unavoidable.
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Proof Sketch of Theorem 1
• By reduction from Minimum Dominating Set (MDS; NP-complete).
• Suppose an algo that can compute 𝑝 ≈ 𝑃!𝜷 𝒚# up to relative error 𝜖.

• Given any MDS instance 𝐺, we can construct an SI instance such that

MDS 𝐺 = 𝑛 − log $%&
$'&(

3

1 + 1 + 𝜖1 − 𝜖 2
)

)

1 − 𝜖 𝑝 .

• Example:

• Remark: Need arbitrary-precision arithmetics with poly 𝑛, log 1/𝜖 bits.

Details in the appendix of our paper 13

Ø 𝑛 = # nodes in 𝐺

MDS 𝐺 = 1

𝐺

I I
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→ ⇒
𝑝 = 𝑃"𝜷 𝒚! = 89/729
3 − log$ 729𝑝 = 1 = MDS 𝐺
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Sensitivity to Estimation Error of Diffusion Parameters
• MLE formulation for diffusion history reconstruction:

max
!𝒀∈,-..(0|𝒚7)

𝑃!𝜷 /𝒀 .

• Theorem 3. Under the SIR model and mild conditions, 
for all possible history 𝒀, we have:

𝜕
𝜕𝛽4

𝑃𝜷 𝒀 = Θ
1
𝛽4

𝑃𝜷 𝒀 ,
𝜕
𝜕𝛽5 𝑃𝜷 𝒀 = Θ

1
𝛽5 𝑃𝜷 𝒀 .

Ø Large for small 𝜷

vReal-world diffusion typically has small true 𝜷 [1, 2].

[1] O’Brien et al. The epidemiology of nontuberculous mycobacterial diseases in the United States: results from a national survey. American Review of Respiratory 
Disease 135, 5 (1987), 1007–1014.
[2] Gardner et al. Inferring contagion patterns in social contact networks using a maximum likelihood approach. Natural Hazards Review 15, 3 (2014), 04014004.
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⟹ Implication: MLE formulation is sensitive to estimation error of /𝜷.



Proof Sketch of Theorem 3
• Follows from our fine-grained characterization of 𝑃𝜷 𝒀 :
• Lemma 8. Every possible history 𝒀 has

𝑃𝜷 𝒀 = 𝜔𝒀 𝛽4 )89 𝒚7 ')89 𝒚: 𝛽5 )9 𝒚7 ')9 𝒚: 1 + O 𝜷
for some constant number 𝜔𝒀 > 0 independent of 𝜷.

ØIntuition of Lemma 8:
• S → I: ∝ 𝛽; 1 + O 𝜷 ;
• I → R: ∝ 𝛽< 1 + O 𝜷 ;
• S → R: ∝ 𝛽;𝛽< 1 + O 𝜷 ;
• S → S, I → I, R → R: ∝ 1 + O 𝜷 .

Details in the appendix of our paper 15
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Hitting Times

• Hitting times for a node 𝑢 in a history 𝒀:
• First infection time: ℎ=; 𝒀 ≔ min 𝑇 + 1,min 𝑡 ≥ 0: 𝑦>,= ≥ I .
• First recovery time: ℎ=< 𝒀 ≔ min 𝑇 + 1,min 𝑡 ≥ 0: 𝑦>,= ≥ R .

State transition order: < < 17
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Stability of Posterior Expected Hitting Times

(Key theoretical observation)

• Theorem 4. Under SIR model and
mild conditions, for any possible 
snapshot 𝒚#,

∇𝜷 𝔼
𝒀∼0𝜷|𝒚7

ℎ74 𝒀 = O 1 ,

∇𝜷 𝔼
𝒀∼0𝜷|𝒚7

ℎ75 𝒀 = O 1 .
Ø Stable even for small 𝜷

18

v Proof Idea: Use Lemma 8 again to characterize 𝑃𝜷 𝒀 and 𝑃𝜷 𝒚# .



MLE Formulation → Barycenter Formulation

• Recall:
• Estimation error of 𝜷 is unavoidable.

✘The MLE formulation is sensitive to estimation error of 𝜷.
Posterior expected hitting times are stable against estimation error of 𝜷.

• Our solution:
ØA novel barycenter formulation based on hitting times.

19



Barycenter Formulation
• History distance 𝑑:

(Euclidean distance with hitting times as coordinates)

𝑑 /𝒀, 𝒀 ≔ O
7∈𝒱

O
9:4,5

ℎ79 /𝒀 − ℎ79 𝒀
(
.

• Barycenter formulation:
(Finding the barycenter )𝒀 of the posterior 
distribution 𝑃A𝜷|𝒚' w.r.t. the history distance 𝑑)

min
!𝒀

𝔼
𝒀∼0A𝜷|𝒚7

𝑑 /𝒀, 𝒀 ( .

20

Posterior 𝑃!𝜷|𝒚#

Barycenter :𝒀

𝑑 :𝒀, 𝒀 = 2



Solution to the Barycenter Formulation
• Bias–variance decomposition:

𝔼
𝒀∼>!𝜷|𝒚#

𝑑 #𝒀, 𝒀
@
= '

A∈𝒱

'
DEF,G

ℎAD #𝒀 − 𝔼
𝒀∼>!𝜷|𝒚#

ℎAD 𝒀
@
+ Var
𝒀∼>!𝜷|𝒚#

ℎAD 𝒀 .

• Variances are constant w.r.t. #𝒀 ⟹ Optimal solution #𝒀:
ℎAD #𝒀 = round 𝔼

𝒀∼>!𝜷|𝒚#
ℎAD 𝒀 , 𝑥 = I, R;

8𝑦H,A =
S, for 0 ≤ 𝑡 < ℎAF #𝒀 ;
I, for ℎAF #𝒀 ≤ 𝑡 < ℎAG #𝒀 ;
R, for ℎAG #𝒀 ≤ 𝑡 ≤ 𝑇.

ØNow our problem reduces to estimating 𝔼
𝒀∼>!𝜷|𝒚#

ℎAD 𝒀 .

21

Ø Posterior expected hitting times



M–H MCMC for Posterior Expectation Estimation
• How to estimate 𝔼

𝒀∼>!𝜷|𝒚#
ℎAD 𝒀 ?

• Our solution: M–H MCMC [1, 2].
1. Design a proposal distribution 𝑄𝜽 𝒚# ⋅ over possible histories.
2. Each step of M–H MCMC samples 𝐿 histories 𝒀 %,' ∼ 𝑄𝜽 𝒚# , 𝑖 = 1,… , 𝐿.
3. Each previous history 𝒀 %(),' is replaced by the new history 𝒀 %,' with probability:

min 1,
𝑃:𝜷 𝒀 I,J 𝒚K 𝑄𝜽 𝒚K 𝒀 IMN,J

𝑃:𝜷 𝒀 IMN,J 𝒚K 𝑄𝜽 𝒚K 𝒀 I,J = min 1,
𝑃:𝜷 𝒀 I,J 𝑄𝜽 𝒚K 𝒀 IMN,J

𝑃:𝜷 𝒀 IMN,J 𝑄𝜽 𝒚K 𝒀 I,J .

ØThe Markov chain 𝒀 %,' provably converges to the posterior distribution 𝑃!𝜷|𝒚# [2].

𝔼
𝒀∼>!𝜷|𝒚#

ℎAD 𝒀 ≈
1
𝐿
'
JEN

O

ℎAD 𝒀 I,J , 𝑠 → +∞.

[1] Metropolis et al. Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21, 6 (1953), 1087–1092. 
[2] Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 1 (1970), 97–109. 22

ØRecall: Intractable to compute 𝑃:𝜷 𝒀 𝒚K .

ØTractable to compute



Learning an Optimal Proposal for M–H MCMC
• The convergence rate of M–H MCMC depends critically on the proposal 𝑄𝜽 .
ØThe proposal 𝑄𝜽 𝒚# closer to 𝑃!𝜷|𝒚# ⟹ Higher rate of convergence [1]. 

• Our solution: Use a GNN to learn an optimal proposal.

• We want 𝑄𝜽 𝒚# to approximate 𝑃!𝜷|𝒚# well ⟹ Objective function: 
min
𝜽

𝔼
𝒀∼0A𝜷

log𝑄𝜽 𝒚# 𝒀 − log𝑃!𝜷 𝒀 𝒚#
( . ∗

[1] Mengersen & Tweedie. Rates of convergence of the Hastings and Metropolis algorithms. The Annals of Statistics 24, 1 (1996), 101–121. 23

𝒚!

Snapshot

Proposal Distribution

𝑄𝜽 𝒚! [⋅]

Input Output

𝑄𝜽

GNN



Equivalent Objective for the Proposal GNN
• Vanilla objective function:

min
𝜽

𝔼
𝒀∼>!𝜷

log𝑄𝜽 𝒚K 𝒀 − log𝑃:𝜷 𝒀 𝒚K
@
. ∗

vRecall: Intractable to compute 𝑃:𝜷 𝒀 𝒚K . Solution?

• Theorem 5 (Equivalent objective). Under mild conditions, for any strictly convex
function 𝜓:ℝT → ℝ, the vanilla objective Eq. ∗ is equivalent to

min
𝜽

𝔼
𝒀∼>!𝜷

𝜓
𝑄𝜽 𝒚K 𝒀
𝑃:𝜷 𝒀

. ∗∗

ØImplication: Intractable 𝑃:𝜷 𝒀 𝒚K in Eq. ∗ → Tractable 𝑃:𝜷 𝒀 in Eq. ∗∗ .

• In this work, we use 𝜓 𝑧 ≔ − log 𝑧, and this objective Eq. ∗∗ instantiates as
min
𝜽

𝔼
𝒀∼>!𝜷

log 𝑃:𝜷 𝒀 − log𝑄𝜽 𝒚K 𝒀 ⟺ min
𝜽

𝔼
𝒀∼>!𝜷

− log𝑄𝜽 𝒚K 𝒀 .
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Time Complexity

• Overall time complexity: O 𝑇 𝑛 log 𝑛 +𝑚 .
ØNearly linear w.r.t. the output size Θ(𝑇𝑛).
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Experimental Setting
• Datasets:

• Synthetic graph + synthetic diffusion
• Real graph + synthetic diffusion
• Real graph w/ real diffusion

• Baselines:
• Supervised methods: GCN [1], GIN [2], BRITS [3], GRIN [4], SPIN [5]
• MLE-based methods: DHREC [6], CRI [7]

• Evaluation metrics:
• F-1 score of node states
• Normalized rooted mean squared error (NRMSE) of hitting times

[1] Kipf & Welling. Semi-supervised classification with graph convolutional networks. International Conference on Learning Representations (2017).
[2] Xu et al. How powerful are graph neural networks? International Conference on Learning Representations (2019).
[3] Cao et al. BRITS: Bidirectional recurrent imputation for time series. Advances in Neural Information Processing Systems 31 (2018).
[4] Cini et al. Filling the G_ap_s: Multivariate time series imputation by graph neural networks. International Conference on Learning Representations (2022).
[5] Marisca et al. Learning to reconstruct missing data from spatiotemporal graphs with sparse observations. Advances in Neural Information Processing Systems 35 (2022).
[6] Sefer & Kingsford. Diffusion archeology for diffusion progression history reconstruction. Knowledge and Information Systems 49, 2 (2016), 403–427.
[7] Chen et al. Detecting multiple information sources in networks under the SIR model. IEEE Transactions on Network Science and Engineering 3, 1 (2016), 17–31.
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Ø Not exactly SI/SIR; unknown true 𝜷



Performance for Real-World Diffusion

DITTO: Consistently strong performance across all datasets.
MLE/Supervised: Bad when real diffusion deviates from SI/SIR.

[1] Valente. 1995. Network Models of the Diffusion of Innovations (2nd Edition). Hampton Press, Cresskill, NJ. 28

Ø BrFarmers is very close to SI [1].



Comparison with MLE-Based Methods

DITTO: Stably achieves the strongest performance.
MLE: Performance varies largely across datasets due to sensitivity. 

29
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Conclusion
• PROBLEM: Reconstructing Diffusion history from A single SnapsHot (DASH).

• THEORETICAL INSIGHTS: Fundamental limitation of the MLE formulation.
Ø Estimation error of 𝜷 is unavoidable.
Ø The MLE formulation is sensitive to estimation error of 𝜷.

• NOVEL FORMULATION: Barycenter formulation with provable stability.

• PROPOSED METHOD: DIffusion hiTting Times with Optimal proposal (DITTO).
ØReducing DASH to estimating posterior expected hitting times via M–H MCMC;
ØUsing a GNN to learn an optimal proposal to accelerate convergence of M–H MCMC.

• EXPERIMENTAL RESULTS:
ØOutperforms both supervised and MLE-based methods.
Ø Strong performance for both synthetic and real-world diffusion.

31
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