

Reconstructing Graph Diffusion History from a Single Snapshot

Ruizhong Qiu UIUC (Presenter)

Dingsu Wang UIUC

Lei Ying UMich

H. Vincent Poor Princeton

Yifang Zhang C3.ai DTI

Hanghang Tong UIUC

C3.ai Digital Transformation Institute

Valente. Network Models of the Diffusion of Innovations (2nd edition, 1995). Hampton Press.
 Avena-Koenigsberger et al. Communication dynamics in complex brain networks. Nature Reviews Neuroscience 19, 1 (2018), 17–33.
 Klovdahl. Social networks and the spread of infectious diseases: The AIDS example. Social Science & Medicine 21, 11 (1985), 1203–1216.
 Wang et al. Understanding the spreading patterns of mobile phone viruses. Science 324, 5930 (2009), <u>1071–1076</u>.

Valente. Network Models of the Diffusion of Innovations (2nd edition, 1995). Hampton Press.
 Avena-Koenigsberger et al. Communication dynamics in complex brain networks. Nature Reviews Neuroscience 19, 1 (2018), 17–33.
 Klovdahl. Social networks and the spread of infectious diseases: The AIDS example. Social Science & Medicine 21, 11 (1985), 1203–1216.
 Wang et al. Understanding the spreading patterns of mobile phone viruses. Science 324, 5930 (2009), 1071–1076.

• At time t = 0, only one node was infected.

R Recovered }

- At time t = 0, only one node was infected.
- At time t = 1, a neighbor got infected, but the other did not.

- At time t = 0, only one node was infected.
- At time t = 1, a neighbor got infected, but the other did not.
- At time t = 2, two nodes got infected, and an infected node recovered.

- At time t = 0, only one node was infected.
- At time t = 1, a neighbor got infected, but the other did not.
- At time t = 2, two nodes got infected, and an infected node recovered.
- At time t = 3, a new node got infected, and one more node recovered.

Problem Definition

KDD2023

• **Problem** (DASH): *Reconstructing* <u>*Diffusion history from* <u>*A*</u> *single* <u>*SnapsHot*</u>.</u>

- Input: (i) graph $(\mathcal{V}, \mathcal{E})$; (ii) timespan T of interest; (iii) final snapshot $\mathbf{y}_T \in \mathcal{X}^{\mathcal{V}}$; (iv) initial distribution $P[\mathbf{y}_0]$.
- **Output:** reconstructed complete diffusion history $\widehat{Y} = [\widehat{y}_0, ..., \widehat{y}_{T-1}, y_T]^T \in \mathcal{X}^{\mathcal{T} \times \mathcal{V}}$. \succ We **do not** assume knowing **true** diffusion parameters.

Challenges of the DASH Problem

C1: Ill-posedness Need appropriate inductive bias

C2: Explosive search space Exponentially many possibilities **C3: Scarcity of training data** Few history data in practice

Previous Methods & Their Limitations

- Supervised time series imputation (e.g., [1, 2])
 - Impractical due to the scarcity of training data.

(a) $P_{\beta}[Y]$ vs $P_{\hat{\beta}}[Y]$ in the MLE formulation.

- Maximum likelihood estimation (MLE; e.g., [3, 4])
 - Sensitive to estimation error of diffusion parameters (our Theorems 1 & 2).

[1] Cini et al. Filling the G_ap_s: Multivariate time series imputation by graph neural networks. International Conference on Learning Representations (2022).
 [2] Marisca et al. Learning to reconstruct missing data from spatiotemporal graphs with sparse observations. Advances in Neural Information Processing Systems (2022).
 [3] Sefer & Kingsford. Diffusion archeology for diffusion progression history reconstruction. Knowledge and Information Systems 49, 2 (2016), 403–427.
 [4] Chen et al. Detecting multiple information sources in networks under the SIR model. IEEE Transactions on Network Science and Engineering 3, 1 (2016), 17–31.

Summary of Main Results

Theoretical insights: Fundamental limitation of the MLE formulation.

- Theorems 1 & 2 \Rightarrow **Unavoidable** estimation error of diffusion parameters.
- Theorem 3 \Rightarrow The MLE formulation is **sensitive** to that estimation error.

Problem formulation:

KDD2023

- A novel *barycenter formulation* based on *hitting times*.
- Provably **stable** against estimation error of diffusion parameters.

Proposed method: <u>DIffusion hi</u><u>T</u>ting <u>T</u>imes with <u>O</u>ptimal proposal (DITTO).

- Reducing the problem to estimating *posterior expected hitting times* via M–H MCMC;
- Using a GNN to learn an **optimal** proposal to accelerate convergence of M–H MCMC.

Contents

✓Introduction

- **Revisiting Diffusion History MLE**
- Proposed Method: DITTO
- Main Experiments
- Conclusion

NP-Hardness of Diffusion Parameter Estimation

- To estimate diffusion parameters β , a conventional approach is MLE: $\max_{\widehat{\beta}} P_{\widehat{\beta}}[y_T]. \quad (\star)$
- Theorem 1 (informal): Computing the probability $P_{\widehat{\beta}}[y_T]$ is NP-hard. $\geq 0\left(\binom{T+1}{2}^n(n+m)\right)$ time. $\stackrel{\text{$\widehat{\beta}$}}{=}$ Think deeper: Is there an algo for $\widehat{\beta}$ MLE without computing $P_{\widehat{\beta}}[y_T]$?
- **Theorem 2** (informal): *Diffusion parameter MLE* (*) *is NP-hard.*

 \Rightarrow Implication: Estimation error of β is unavoidable.

Proof Sketch of Theorem 1

KDD2023

- By reduction from **Minimum Dominating Set** (MDS; NP-complete).
- Suppose an algo that can compute $p \approx P_{\hat{\beta}}[y_T]$ up to relative error ϵ .
- Given any MDS instance G, we can construct an SI instance such that

• <u>Remark</u>: Need **arbitrary-precision** arithmetics with $poly(n, log 1/\epsilon)$ bits.

Sensitivity to Estimation Error of Diffusion Parameters

• *MLE formulation* for diffusion history reconstruction:

 $\max_{\widehat{\mathbf{Y}}\in \operatorname{supp}(P|\mathbf{y}_T)} P_{\widehat{\boldsymbol{\beta}}}[\widehat{\mathbf{Y}}].$

• **Theorem 3**. Under the SIR model and mild conditions, for all possible history **Y**, we have:

$$\frac{\partial}{\partial \beta^{\mathrm{I}}} P_{\beta}[Y] = \Theta\left(\frac{1}{\beta^{\mathrm{I}}}\right) P_{\beta}[Y],$$
$$\frac{\partial}{\partial \beta^{\mathrm{R}}} P_{\beta}[Y] = \Theta\left(\frac{1}{\beta^{\mathrm{R}}}\right) P_{\beta}[Y].$$
$$\succ \text{ Large for small } \beta$$

(a) $P_{\beta}[Y]$ vs $P_{\hat{\beta}}[Y]$ in the MLE formulation.

Real-world diffusion typically has small true β [1, 2]. mula

\Rightarrow Implication: MLE formulation is sensitive to estimation error of $\widehat{m{eta}}$.

O'Brien et al. The epidemiology of nontuberculous mycobacterial diseases in the United States: results from a national survey. American Review of Respiratory Disease 135, 5 (1987), 1007–1014.
 Gardner et al. Inferring contagion patterns in social contact networks using a maximum likelihood approach. Natural Hazards Review 15, 3 (2014), 04014004.

Proof Sketch of Theorem 3

- Follows from our **fine-grained** characterization of P_β[Y]:
- Lemma 8. Every possible history Y has # new infections # new recoveries $P_{\beta}[Y] = \omega_{Y}(\beta^{I})^{n^{IR}(y_{T}) - n^{IR}(y_{0})}(\beta^{R})^{n^{R}(y_{T}) - n^{R}(y_{0})}(1 + 0(||\beta||))$

for some constant number $\omega_Y > 0$ independent of β .

➢Intuition of Lemma 8:

KDD2023

- $S \rightarrow I: \propto \beta^{I} (1 + O(\|\boldsymbol{\beta}\|));$
- $\mathbf{I} \rightarrow \mathbf{R}: \propto \beta^{\mathbf{R}} (1 + \mathbf{O}(\|\boldsymbol{\beta}\|));$
- $S \rightarrow R: \propto \beta^{I} \beta^{R} (1 + O(\|\boldsymbol{\beta}\|));$
- $S \rightarrow S, I \rightarrow I, R \rightarrow R: \propto 1 + O(\|\boldsymbol{\beta}\|).$

Contents

- ✓Introduction
- ✓ Revisiting Diffusion History MLE
- Proposed Method: DITTO
- Main Experiments
- Conclusion

Hitting Times

- *Hitting times* for a node *u* in a history *Y*:
 - First infection time: $h_u^{\mathbf{I}}(\mathbf{Y}) \coloneqq \min\{T+1, \min\{t \ge 0: y_{t,u} \ge \mathbf{I}\}\}.$
 - First recovery time: $h_u^{\mathbb{R}}(Y) \coloneqq \min\{T+1, \min\{t \ge 0: y_{t,u} \ge \mathbb{R}\}\}$.

Stability of Posterior Expected Hitting Times

(Key theoretical observation)

KDD2023

• Theorem 4. Under SIR model and mild conditions, for any possible snapshot y_T , $\nabla_{\beta} \underset{Y \sim P_{\beta}|y_T}{\mathbb{E}} [h_u^{\mathrm{I}}(Y)] = O(1),$ $\nabla_{\beta} \underset{Y \sim P_{\beta}|y_T}{\mathbb{E}} [h_u^{\mathrm{R}}(Y)] = O(1).$

Stable even for small β

the barycenter formulation.

Figure 2: Sensitivity of the MLE formulation vs stability of the barycenter formulation.

Proof Idea: Use Lemma 8 again to characterize $P_{\beta}[Y]$ and $P_{\beta}[y_T]$.

MLE Formulation → **Barycenter Formulation**

• Recall:

• Estimation error of $\boldsymbol{\beta}$ is **unavoidable**.

X The MLE formulation is **sensitive** to estimation error of β .

Posterior expected *hitting times* are **stable** against estimation error of β .

• Our solution:

>A novel *barycenter formulation* based on *hitting times*.

Barycenter Formulation

• *History distance d*:

KDD2023

(Euclidean distance with *hitting times* as coordinates)

$$d(\widehat{Y}, Y) \coloneqq \sqrt{\sum_{u \in \mathcal{V}} \sum_{x=I,R} \left(h_u^x(\widehat{Y}) - h_u^x(Y) \right)^2} \cdot \left(\begin{array}{c} & \text{Posterior } P_{\widehat{\beta}} | y_T \\ & \text{Posterior } P_{\widehat{\beta}} | y_T \end{array} \right)$$

• **Barycenter formulation:**

(Finding the *barycenter* \widehat{Y} of the posterior distribution $P_{\widehat{\beta}}|y_T$ w.r.t. the history distance d)

$$\min_{\widehat{\mathbf{Y}}} \mathbb{E}_{\mathbf{Y} \sim P_{\widehat{\boldsymbol{\beta}}} | \mathbf{y}_T} \left[d(\widehat{\mathbf{Y}}, \mathbf{Y})^2 \right].$$

Solution to the Barycenter Formulation

KDD2023

 Bias-variance decomposition: Posterior expected hitting times $\mathbb{E}_{\boldsymbol{Y} \sim P_{\widehat{\boldsymbol{\beta}}} | \boldsymbol{y}_{T}} \left[d \left(\widehat{\boldsymbol{Y}}, \boldsymbol{Y} \right)^{2} \right] = \sum_{u \in \mathcal{V}} \sum_{\boldsymbol{Y} = \mathbf{I} \mathbf{R}} \left(\left(h_{u}^{x} \left(\widehat{\boldsymbol{Y}} \right) - \mathbb{E}_{\boldsymbol{Y} \sim P_{\widehat{\boldsymbol{\beta}}} | \boldsymbol{y}_{T}} \left[h_{u}^{x} (\boldsymbol{Y}) \right] \right)^{2} + \operatorname{Var}_{\boldsymbol{Y} \sim P_{\widehat{\boldsymbol{\beta}}} | \boldsymbol{y}_{T}} \left[h_{u}^{x} (\boldsymbol{Y}) \right] \right).$ • Variances are constant w.r.t. $\widehat{Y} \implies$ Optimal solution \widehat{Y} : $h_{u}^{x}(\widehat{\mathbf{Y}}) = \operatorname{round} \left(\underbrace{\mathbb{E}}_{\mathbf{Y} \sim P_{\widehat{\boldsymbol{\beta}}} | \mathbf{y}_{T}} [h_{u}^{x}(\mathbf{Y})] \right), \quad x = I, R;$ $\hat{y}_{t,u} = \begin{cases} S, & \text{for } 0 \leq t < h_{u}^{I}(\widehat{\mathbf{Y}}); \\ I, & \text{for } h_{u}^{I}(\widehat{\mathbf{Y}}) \leq t < h_{u}^{R}(\widehat{\mathbf{Y}}); \\ R, & \text{for } h_{u}^{R}(\widehat{\mathbf{Y}}) \leq t \leq T. \end{cases}$

Now our problem **reduces** to estimating $\underset{Y \sim P_{\widehat{B}}|y_T}{\mathbb{E}} [h_u^x(Y)].$

M–H MCMC for Posterior Expectation Estimation

- How to estimate $\mathbb{E}_{Y \sim P_{\widehat{\beta}} | y_T} [h_u^x(Y)]? \geq \mathbb{R}ecall: Intractable to compute <math>P_{\widehat{\beta}}[Y|y_T].$
- <u>Our solution:</u> *M–H MCMC* [1, 2].

KDD2023

- 1. Design a **proposal** distribution $Q_{\theta}(y_T)[\cdot]$ over **possible** histories.
- 2. Each step of M–H MCMC samples L histories $Y^{(s,i)} \sim Q_{\theta}(y_T)$, i = 1, ..., L.

3. Each previous history $\mathbf{Y}^{(s-1,i)}$ is replaced by the new history $\mathbf{Y}^{(s,i)}$ with probability: $\min\left\{1, \frac{P_{\widehat{\boldsymbol{\beta}}}[\mathbf{Y}^{(s,i)}|\mathbf{y}_T]Q_{\boldsymbol{\theta}}(\mathbf{y}_T)[\mathbf{Y}^{(s-1,i)}]}{P_{\widehat{\boldsymbol{\beta}}}[\mathbf{Y}^{(s-1,i)}|\mathbf{y}_T]Q_{\boldsymbol{\theta}}(\mathbf{y}_T)[\mathbf{Y}^{(s,i)}]}\right\} = \min\left\{1, \frac{P_{\widehat{\boldsymbol{\beta}}}[\mathbf{Y}^{(s,i)}]Q_{\boldsymbol{\theta}}(\mathbf{y}_T)[\mathbf{Y}^{(s-1,i)}]}{P_{\widehat{\boldsymbol{\beta}}}[\mathbf{Y}^{(s-1,i)}]Q_{\boldsymbol{\theta}}(\mathbf{y}_T)[\mathbf{Y}^{(s,i)}]}\right\}.$ $\mathbf{Fractable to compute}$

> The Markov chain $\langle Y^{(s,i)} \rangle$ provably converges to the posterior distribution $P_{\hat{\beta}}|y_T$ [2].

$$\mathbb{E}_{\boldsymbol{Y}\sim \boldsymbol{P}_{\widehat{\boldsymbol{\beta}}}|\boldsymbol{y}_{T}}[h_{u}^{x}(\boldsymbol{Y})]\approx\frac{1}{L}\sum_{i=1}^{L}h_{u}^{x}(\boldsymbol{Y}^{(s,i)}), \qquad s\rightarrow+\infty.$$

[1] Metropolis et al. Equation of state calculations by fast computing machines. *The Journal of Chemical Physics* 21, 6 (1953), 1087–1092.
[2] Hastings. Monte Carlo sampling methods using Markov chains and their applications. *Biometrika* 57, 1 (1970), 97–109.

Learning an Optimal Proposal for M–H MCMC

- The convergence rate of M–H MCMC depends critically on the proposal Q_{θ} . > The proposal $Q_{\theta}(y_T)$ closer to $P_{\hat{\beta}}|y_T \Longrightarrow$ Higher rate of convergence [1].
- Our solution: Use a GNN to learn an optimal proposal.

KDD2023

Equivalent Objective for the Proposal GNN

• Vanilla objective function:

KDD2023

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{Y} \sim P_{\widehat{\boldsymbol{\beta}}}} \left[\left(\log Q_{\boldsymbol{\theta}}(\boldsymbol{y}_T) [\boldsymbol{Y}] - \log P_{\widehat{\boldsymbol{\beta}}} [\boldsymbol{Y} | \boldsymbol{y}_T] \right)^2 \right]. \quad (*)$$

*<u>Recall</u>: Intractable to compute $P_{\hat{\beta}}[Y|y_T]$. <u>Solution</u>?

• Theorem 5 (Equivalent objective). Under mild conditions, for any strictly convex function $\psi \colon \mathbb{R}_+ \to \mathbb{R}$, the vanilla objective Eq. (*) is equivalent to $\min_{\theta} \mathbb{E}_{\mathbf{Y} \sim P_{\widehat{\boldsymbol{\beta}}}} \left[\psi \left(\frac{Q_{\theta}(\boldsymbol{y}_T)[\mathbf{Y}]}{P_{\widehat{\boldsymbol{\beta}}}[\mathbf{Y}]} \right) \right]. \quad (**)$

 \succ Implication: Intractable $P_{\widehat{\beta}}[Y|y_T]$ in Eq. (*) \rightarrow Tractable $P_{\widehat{\beta}}[Y]$ in Eq. (**).

• In this work, we use $\psi(z) \coloneqq -\log z$, and this objective Eq. (**) instantiates as $\min_{\theta} \mathop{\mathbb{E}}_{Y \sim P_{\widehat{\beta}}} [\log P_{\widehat{\beta}}[Y] - \log Q_{\theta}(y_T)[Y]] \Leftrightarrow \min_{\theta} \mathop{\mathbb{E}}_{Y \sim P_{\widehat{\beta}}} [-\log Q_{\theta}(y_T)[Y]].$

Time Complexity

KDD2023

• Overall time complexity: $O(T(n \log n + m))$. > Nearly linear w.r.t. the output size $\Theta(Tn)$.

Contents

- ✓Introduction
- ✓ Revisiting Diffusion History MLE
- ✓ Proposed Method: DITTO
- >Main Experiments
- Conclusion

Experimental Setting

• Datasets:

KDD2023

- Synthetic graph + synthetic diffusion
- Real graph + synthetic diffusion
- Real graph w/ real diffusion \geq Not exactly SI/SIR; unknown true β
- Baselines:
 - Supervised methods: GCN [1], GIN [2], BRITS [3], GRIN [4], SPIN [5]
 - MLE-based methods: DHREC [6], CRI [7]
- Evaluation metrics:
 - F-1 score of node states
 - Normalized rooted mean squared error (NRMSE) of hitting times

[1] Kipf & Welling. Semi-supervised classification with graph convolutional networks. *International Conference on Learning Representations* (2017).

[2] Xu et al. How powerful are graph neural networks? International Conference on Learning Representations (2019).

[3] Cao et al. BRITS: Bidirectional recurrent imputation for time series. Advances in Neural Information Processing Systems 31 (2018).

[4] Cini et al. Filling the G_ap_s: Multivariate time series imputation by graph neural networks. International Conference on Learning Representations (2022).

[5] Marisca et al. Learning to reconstruct missing data from spatiotemporal graphs with sparse observations. Advances in Neural Information Processing Systems 35 (2022).

[6] Sefer & Kingsford. Diffusion archeology for diffusion progression history reconstruction. Knowledge and Information Systems 49, 2 (2016), 403–427.

[7] Chen et al. Detecting multiple information sources in networks under the SIR model. IEEE Transactions on Network Science and Engineering 3, 1 (2016), 17–31.

DCA

Performance for Real-World Diffusion

KDD2023

> BrFarmers is very close to SI [1].

Table 4: Results for real-world diffusion. "OOM" indicates "out of memory."

Туре	Mathad	BrF	armers		Pol	0	Covid	Hebrew		
	Method	F1↑	NRMSE↓	F1↑	NRMSE↓	F1↑	NRMSE↓	F1↑	NRMSE↓	
Supervised (w/ estimated $\widehat{oldsymbol{eta}}$)	GCN	.5409	.6660	.4458	.4946	.3162	.5214	.3350	.6070	
	GIN	.4548	.6565	.5203	.4767	.3226	.4951	.3704	.7816	
	BRITS	.5207	.3995	OOM		.3524	.5333	.3120	.6584	
	GRIN	.8003	.2425	.6518	.3731	.5448	.3040	.5916	.2212	
	SPIN	.8268	.2084	(DOM	<u>.5917</u>	.2932	.5178	.3330	
MIE	DHREC	.6131	.4150	.7023	.3398	.3540	.6023	.6251	.4169	
MILE	CRI	.6058	.4444	<u>.7468</u>	<u>.2942</u>	.4170	.5487	.5344	.3552	
Barycenter	DITTO (ours)	.8206	.2142	.7471	.2903	.6240	.2637	.6411	<u>.2983</u>	

DITTO: Consistently strong performance across all datasets. MLE/Supervised: Bad when real diffusion deviates from SI/SIR.

Comparison with MLE-Based Methods

Table 5: Comparison with MLE-based methods on synthetic SI and SIR diffusion. *We use GRIN trained with true β as the ideal performance and calculate *Gap* w.r.t. this ideal performance.

Туре	Mathad	BA-SI			ER-SI				Oregon2-SI				Prost-SI				
	Method	F1↑	Gap↓	NRMSE↓	Gap↓	F1↑	Gap↓	NRMSE↓	Gap↓	F1↑	Gap↓	NRMSE↓	Gap↓	F1↑	Gap↓	NRMSE↓	Gap↓
Ideal	GRIN	.8404*	—	.2123*	-	.8317*	_	.2166*	—	.8320*	_	.2249*	-	.8482*	—	.2155*	_
MIF	DHREC	.6026	28.30%	.4644	118.75%	.6281	24.48%	.4495	107.53%	.6038	27.43%	.4101	82.35%	.6558	22.68%	.4138	92.02%
WILL	CRI	.7502	10.73%	.3012	41.87%	.7797	6.25%	.2744	26.69%	.8183	1.65%	.2438	8.40%	.8083	4.70%	.2491	15.59%
Barycenter	DITTO (ours)	.8384	0.24%	.2139	0.75%	.8269	0.58%	.2225	2.72%	.8280	0.48%	.2289	1.78%	.8327	1.83%	.2317	7.52%
Type Mathad			BA-SIR			ER-SIR				Oregon2-SIR				Prost-SIR			
Tune	Mathod		В	A-SIR			F	ER-SIR			Ore	gon2-SIR			Pr	ost-SIR	
Туре	Method	F1↑	B Gap↓	A-SIR ∣ NRMSE↓	Gap↓	F1↑	H Gap↓	ER-SIR NRMSE↓	Gap↓	F1↑	Oreg Gap↓	gon2-SIR NRMSE↓	Gap↓	F1↑	Pr Gap↓	ost-SIR NRMSE↓	Gap↓
Type Ideal	Method GRIN	F1↑ .7867*	B Gap↓ —	A-SIR NRMSE↓ .1692*	Gap↓ —	F1↑ .7626*	H Gap↓ —	ER-SIR NRMSE↓ .2484*	Gap↓ —	F1↑ .8024*	Oreį Gap↓ —	gon2-SIR NRMSE↓ .1651*	Gap↓ —	F1↑ .8067*	Pr Gap↓ —	ost-SIR NRMSE↓ .1652*	Gap↓ —
Type Ideal	Method GRIN DHREC	F1↑ .7867* .5080	B Gap↓ 	A-SIR NRMSE↓ .1692* .4722	Gap↓ 179.08%	F1↑ .7626*	H Gap↓ 27.88%	ER-SIR NRMSE↓ .2484* .4423	Gap↓ 78.06%	F1↑ .8024*	Oreg Gap↓ 24.68%	gon2-SIR NRMSE↓ .1651* .4478	Gap↓ 171.23%	F1↑ .8067* .6268	Pr Gap↓ 	ost-SIR NRMSE↓ .1652* .4326	Gap↓ 161.86%
Type Ideal MLE	Method GRIN DHREC CRI	F1↑ .7867* .5080 .5994	B Gap↓ 	A-SIR NRMSE↓ .1692* .4722 .3356	Gap↓ 179.08% 98.35%	F1↑ .7626* .5500 .6129	E Gap↓ 	ER-SIR NRMSE↓ .2484* .4423 .3109	Gap↓ 78.06% 25.16%	F1↑ .8024* .6044 .5761	Oreţ Gap↓ 	gon2-SIR NRMSE↓ .1651* .4478 .3576	Gap↓ 	F1↑ .8067* .6268 .5738	Pr Gap↓ 	ost-SIR NRMSE↓ .1652* .4326 .3406	Gap↓ 161.86% 106.17%

DITTO: Stably achieves the strongest performance.

MLE: Performance varies largely across datasets due to **sensitivity**.

Contents

- ✓Introduction
- ✓ Revisiting Diffusion History MLE
- ✓ Proposed Method: DITTO
- ✓ Main Experiments
- ≻Conclusion

KDD2023

- <u>PROBLEM</u>: Reconstructing <u>D</u>iffusion history from <u>A</u> single <u>SnapsHot</u> (DASH).
- <u>THEORETICAL INSIGHTS</u>: Fundamental limitation of the MLE formulation.
 ➢ Estimation error of β is unavoidable.
 - \succ The MLE formulation is **sensitive** to estimation error of β .
- NOVEL FORMULATION: *Barycenter formulation* with provable stability.
- PROPOSED METHOD: <u>DIffusion hi</u><u>T</u>ting <u>Times</u> with <u>O</u>ptimal proposal (DITTO).
 ➢ Reducing DASH to estimating posterior expected hitting times via M−H MCMC;
 ➢ Using a GNN to learn an optimal proposal to accelerate convergence of M−H MCMC.
- EXPERIMENTAL RESULTS:
 - Outperforms both supervised and MLE-based methods.
 - Strong performance for both **synthetic** and **real-world** diffusion.

Thanks for attending

Reconstructing Graph Diffusion History from a Single Snapshot

Ruizhong Qiu UIUC (Presenter)

Dingsu Wang UIUC

Lei Ying UMich

H. Vincent Poor Princeton

Yifang Zhang C3.ai DTI

Hanghang Tong UIUC

C3.ai Digital Transformation Institute

ACKNOWLEDGEMENTS

