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INTRODUCTION
Diffusion on Graphs

Problem Definition

Challenges of the DASH Problem

Previous Methods & Their Limitations

Cybersecurity:
Malware Spreading

Epidemiology:
Disease Contagion

Neuroscience:
Activation Cascading

Sociology:
Diffusion of Innovations
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Unobserved Graph Diffusion History Observed Snapshot

Problem (DASH): Reconstructing Diffusion history from A single SnapsHot.
Input: (i) graph 𝒱, ℰ ; (ii) timespan 𝑇 of interest;

(iii) final snapshot 𝒚! ∈ 𝒳𝒱; (iv) initial distribution 𝑃 𝒚# .
Output: reconstructed complete diffusion history )𝒀 = ,𝒚#, … , ,𝒚!$%, 𝒚! & ∈ 𝒳𝒯×𝒱.

ØWe do not assume knowing true diffusion parameters.

C1: Ill-posedness
Need appropriate inductive bias

C2: Explosive search space
Exponentially many possibilities

C3: Scarcity of training data
Few history data in practice

…

Unavailable

Unavailable

Supervised time series
imputation is
impractical due to the
scarcity of training data.

Maximum likelihood
estimation (MLE) is
sensitive to estimation error
of diffusion parameters
(our Theorems 1 & 2).

State transition order: < <IS R

• The convergence rate of M–H MCMC depends critically on the proposal 𝑄𝜽.
Ø𝑄𝜽 𝒚! closer to 𝑃+𝜷|𝒚!⟹ Higher rate of convergence. 

• Our solution: Use a GNN to learn an optimal proposal.

• Objective function: (a corollary of our Theorem 5; see our paper for details)
min
𝜽

𝔼
𝒀∼/!𝜷

− log𝑄𝜽 𝒚! 𝒀 .

PROPOSED METHOD: DITTO

Hitting Times

Stability of Posterior Expected Hitting Times

MLE Formulation → Barycenter Formulation

Solution to the Barycenter Formulation

M–H MCMC for Posterior Expectation Estimation

Learning an Optimal Proposal for M–H MCMC

• First infection time: ℎ01 𝒀 ≔ min 𝑇 + 1,min 𝑡 ≥ 0: 𝑦2,0 ≥ I .
• First recovery time: ℎ04 𝒀 ≔ min 𝑇 + 1,min 𝑡 ≥ 0: 𝑦2,0 ≥ R .
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(Key theoretical observation)
• Theorem 4. Under SIR model and mild

conditions, for any possible snapshot 𝒚!,
∇𝜷 𝔼

𝒀∼/𝜷|𝒚#
ℎ01 𝒀 = O 1 ,

∇𝜷 𝔼
𝒀∼/𝜷|𝒚#

ℎ04 𝒀 = O 1 .

ØStable even for small 𝜷

v Proof Idea: Use Lemma 8 again to characterize 𝑃𝜷 𝒀 and 𝑃𝜷 𝒚! .

• Estimation error of 𝜷 is unavoidable.
✘ The MLE formulation is sensitive to estimation error of 𝜷.

Posterior expected hitting times are stable against estimation error of 𝜷.
• Our solution: A novel barycenter formulation based on hitting times.

• History distance 𝑑:
(Euclidean distance with hitting times as coordinates)

𝑑 #𝒀, 𝒀 ≔ '
(∈𝒱

'
+,-,/

ℎ(+ #𝒀 − ℎ(+ 𝒀
0
.

• Barycenter formulation: (Finding the barycenter #𝒀 of the 
posterior distribution 𝑃1𝜷|𝒚3 w.r.t. the history distance 𝑑)

min
1𝒀

𝔼
𝒀∼6$𝜷|𝒚&

𝑑 #𝒀, 𝒀 0 .

Posterior 𝑃!𝜷|𝒚#

Barycenter
+𝒀

𝑑 +𝒀, 𝒀
= 2

• Bias–variance decomposition:
𝔼

𝒀∼6$𝜷|𝒚&
𝑑 #𝒀, 𝒀 0 = '

(∈𝒱

'
+,-,/

ℎ(+ #𝒀 − 𝔼
𝒀∼6$𝜷|𝒚&

ℎ(+ 𝒀
0 + Var

𝒀∼6$𝜷|𝒚&
ℎ(+ 𝒀 .

• Variances are constant w.r.t. )𝒀 ⟹ Optimal solution )𝒀:
ℎ(+ #𝒀 = round 𝔼

𝒀∼6$𝜷|𝒚&
ℎ(+ 𝒀 , 𝑥 = I, R;

>𝑦8,( =
S, for 0 ≤ 𝑡 < ℎ(- #𝒀 ;
I, for ℎ(- #𝒀 ≤ 𝑡 < ℎ(/ #𝒀 ;
R, for ℎ(/ #𝒀 ≤ 𝑡 ≤ 𝑇.

• How to estimate 𝔼
𝒀∼/!𝜷|𝒚#

ℎ0= 𝒀 ?

• Our solution: M–H MCMC [1, 2].
1. Design a proposal distribution 𝑄𝜽 𝒚! ⋅ over possible histories.
2. Each step of M–H MCMC samples 𝐿 histories 𝒀 >,? ∼ 𝑄𝜽 𝒚! , 𝑖 = 1,… , 𝐿.
3. Each previous history 𝒀 >$%,? is replaced by the new history 𝒀 >,? with probability:

min 1,
𝑃1𝜷 𝒀 9,: 𝒚3 𝑄𝜽 𝒚3 𝒀 9<=,:

𝑃1𝜷 𝒀 9<=,: 𝒚3 𝑄𝜽 𝒚3 𝒀 9,: = min 1,
𝑃1𝜷 𝒀 9,: 𝑄𝜽 𝒚3 𝒀 9<=,:

𝑃1𝜷 𝒀 9<=,: 𝑄𝜽 𝒚3 𝒀 9,: .

ØThe Markov chain 𝒀 >,? provably converges to the posterior distribution 𝑃+𝜷|𝒚!.

𝔼
𝒀∼6$𝜷|𝒚&

ℎ(+ 𝒀 ≈
1
𝐿
'
:,=

>

ℎ(+ 𝒀 9,: , 𝑠 → +∞.

ØRecall: Intractable to compute 𝑃+𝜷 𝒀 𝒚! .

ØTractable to compute
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• The convergence rate of M–H MCMC depends critically on the proposal 𝑄𝜽.
Ø𝑄𝜽 𝒚! closer to 𝑃+𝜷|𝒚!⟹ Higher rate of convergence. 

• Our solution: Use a GNN to learn an optimal proposal.

• Objective function: (a corollary of our Theorem 5; see our paper for details)
min
𝜽

𝔼
𝒀∼/!𝜷

− log𝑄𝜽 𝒚! 𝒀 .

MAIN EXPERIMENTS
Performance for Real-World Diffusion

Comparison with MLE-Based Methods

• DITTO: Consistently strong performance
across all datasets.
• MLE/Supervised: Bad when real diffusion

deviates from SI/SIR.

Ø BrFarmers is very close to SI.

DITTO: Stably achieves the 
strongest performance.
MLE: Performance vary 
largely across datasets due 
to sensitivity.

REVISITING DIFFUSION HISTORY MLE
NP-Hardness of Diffusion Parameter Estimation

Sensitivity to Estimation Error of Diffusion Parameters

• To estimate diffusion parameters 𝜷, a conventional approach is MLE:
max
+𝜷
𝑃+𝜷 𝒚! . ⋆

• Theorem 1 (informal): Computing the probability 𝑃+𝜷 𝒚! is NP-hard.

vThink deeper: Is there an algo for )𝜷 MLE without computing 𝑃+𝜷 𝒚! ?

• Theorem 2 (informal): Diffusion parameter MLE ⋆ is NP-hard.

⟹ Implication: Estimation error of 𝜷 is unavoidable.

ØO 3?=
0

@
𝑛 +𝑚 time.

• MLE formulation for diffusion history reconstruction:
max

+𝒀∈EFGG(/|𝒚#)
𝑃+𝜷 )𝒀 .

• Theorem 3. Under the SIR model and mild conditions, for all
possible history 𝒀, we have:

𝜕
𝜕𝛽- 𝑃𝜷 𝒀 = Θ

1
𝛽- 𝑃𝜷 𝒀 ,

𝜕
𝜕𝛽/ 𝑃𝜷 𝒀 = Θ

1
𝛽/ 𝑃𝜷 𝒀 .

vReal-world diffusion typically has small true 𝜷.

⟹ Implication: MLE formulation is sensitive to estimation error of )𝜷.

Ø Large for small 𝜷

HIGHLIGHTS
ØProblem definition: Reconstructing Diffusion history from A Single snapsHot (DASH).
• We do not assume knowing true diffusion parameters.
• We do not assume having real histories as training data.

ØTheoretical insights: Fundamental limitation of the MLE formulation.
• Theorems 1 & 2 ⟹ Unavoidable estimation error of diffusion parameters.
• Theorem 3 ⟹ The MLE formulation is sensitive to that estimation error.

ØProblem formulation:
• A novel barycenter formulation based on hitting times.
• Provably stable against estimation error of diffusion parameters.

ØProposed method: DIffusion hiTting Times with Optimal proposal (DITTO).
• Reducing the problem to estimating posterior expected hitting times via M–H MCMC;
• Using a GNN to learn an optimal proposal to accelerate convergence of M–H MCMC.

ACKNOWLEDGEMENTS


