Reconstructing Graph Diffusion History from a Single Snapshot

Ruizhong Qiu[†] Dingsu Wang[†] Lei Ying[‡] H. Vincent Poor[§] Yifang Zhang[¶] Hanghang Tong[†]

{rq5, dingsuw2, htong, zhang303}@illinois.edu

§ Princeton S PRINCETON UNIVERSITY

leiving@umich.edu

C3.ai Digital ¶C3.ai DTI Transformation Institute

HIGHLIGHTS

Problem definition: Reconstructing Diffusion history from A Single snapsHot (DASH).

- We **do not** assume knowing **true** diffusion parameters.
- We do not assume having real histories as training data.

Theoretical insights: Fundamental limitation of the MLE formulation.

- Theorems 1 & 2 \Rightarrow Unavoidable estimation error of diffusion parameters.
- Theorem $3 \implies$ The MLE formulation is **sensitive** to that estimation error.

Problem formulation:

- A novel *barycenter formulation* based on *hitting times*.
- Provably stable against estimation error of diffusion parameters.

Proposed method: <u>DIffusion hi</u>ting <u>Times with Optimal proposal</u> (DITTO).

PROPOSED METHOD: DITTO

poor@princeton.edu

Hitting Times

• First infection time: $h_u^{\mathbf{I}}(\mathbf{Y}) \coloneqq \min\{T+1, \min\{t \ge 0: y_{t,u} \ge \mathbf{I}\}\}$. • First recovery time: $h_u^{\mathbb{R}}(Y) \coloneqq \min\{T+1, \min\{t \ge 0: y_{t,u} \ge \mathbb{R}\}\}$.

Stability of Posterior Expected Hitting Times

(**Key** theoretical observation) • **Theorem 4**. Under SIR model and mild

conditions, for any possible snapshot y_T , $\nabla_{\boldsymbol{\beta}} \underset{\boldsymbol{Y} \sim P_{\boldsymbol{\beta}} \mid \boldsymbol{y}_{T}}{\mathbb{E}} [h_{u}^{\mathrm{I}}(\boldsymbol{Y})] = O(1),$ $\nabla_{\boldsymbol{\beta}} \mathop{\mathbb{E}}_{\boldsymbol{Y} \sim P_{\boldsymbol{\beta}} | \boldsymbol{y}_{T}} [h_{u}^{\mathrm{R}}(\boldsymbol{Y})] = \mathrm{O}(1).$

• Reducing the problem to estimating *posterior expected hitting times* via M–H MCMC; • Using a GNN to learn an optimal proposal to accelerate convergence of M–H MCMC.

INTRODUCTION

Diffusion on Graphs

Sociology: Neuroscience: Diffusion of Innovations Activation Cascading

Epidemiology: Disease Contagion

Cybersecurity: Malware Spreading

Problem Definition

MLE Formulation → **Barycenter Formulation**

- Estimation error of β is **unavoidable**.
- **X** The MLE formulation is **sensitive** to estimation error of β .
- Posterior expected *hitting times* are **stable** against estimation error of β .
- Our solution: A novel barycenter formulation based on hitting times.
- History distance d:

(Euclidean distance with *hitting times* as coordinates)

• **Barycenter formulation:** (Finding the barycenter \widehat{Y} of the posterior distribution $P_{\hat{\beta}}|y_T$ w.r.t. the history distance d)

Solution to the Barycenter Formulation

• Bias-variance decomposition:

$$\sum_{\mathbf{Y} \sim P_{\widehat{\beta}} | \mathbf{y}_{T}} \left[d(\widehat{\mathbf{Y}}, \mathbf{Y})^{2} \right] = \sum_{u \in \mathcal{V}} \sum_{x=I,R} \left(\left(h_{u}^{x}(\widehat{\mathbf{Y}}) - \sum_{\mathbf{Y} \sim P_{\widehat{\beta}} | \mathbf{y}_{T}} [h_{u}^{x}(\mathbf{Y})] \right)^{2} + \sum_{\mathbf{Y} \sim P_{\widehat{\beta}} | \mathbf{y}_{T}} [h_{u}^{x}(\mathbf{Y})] \right)$$
• Variances are constant w.r.t. $\widehat{\mathbf{Y}} \implies$ Optimal solution $\widehat{\mathbf{Y}}$:

$$h_{u}^{x}(\widehat{\mathbf{Y}}) = \operatorname{round} \left(\sum_{\mathbf{Y} \sim P_{\widehat{\beta}} | \mathbf{y}_{T}} [h_{u}^{x}(\mathbf{Y})] \right), \quad x = I, R;$$

$$\widehat{y}_{t,u} = \begin{cases} S, & \text{for } 0 \leq t < h_{u}^{I}(\widehat{\mathbf{Y}}); \\ I, & \text{for } h_{u}^{I}(\widehat{\mathbf{Y}}) \leq t < h_{u}^{R}(\widehat{\mathbf{Y}}); \\ R, & \text{for } h_{u}^{R}(\widehat{\mathbf{Y}}) \leq t \leq T. \end{cases}$$
M-H MCMC for Posterior Expectation Estimation

(iii) final snapshot $\mathbf{y}_T \in \mathcal{X}^{\mathcal{V}}$; (iv) initial distribution $P[\mathbf{y}_0]$. **Output:** reconstructed complete diffusion history $\widehat{Y} = [\widehat{y}_0, ..., \widehat{y}_{T-1}, y_T]^T \in \mathcal{X}^{T \times \mathcal{V}}$. > We **do not** assume knowing **true** diffusion parameters.

Challenges of the DASH Problem

C1: Ill-posedness Need appropriate inductive bias **C2:** Explosive search space **C3: Scarcity of training data** Exponentially many possibilities Few history data in practice

Previous Methods & Their Limitations

Supervised time series *imputation* is impractical due to the scarcity of training data. X Unavailable Maximum likelihood estimation (MLE) is sensitive to estimation error of diffusion parameters (our Theorems 1 & 2).

- How to estimate $\mathbb{E}_{Y \sim P_{\widehat{\rho}} | y_T} [h_u^x(Y)]$? \geq <u>Recall</u>: Intractable to compute $P_{\hat{B}}[Y|y_T]$.
- Our solution: *M–H MCMC* [1, 2].
 - 1. Design a *proposal* distribution $Q_{\theta}(y_T)[\cdot]$ over **possible** histories.
 - 2. Each step of M–H MCMC samples L histories $\mathbf{Y}^{(s,i)} \sim Q_{\boldsymbol{\theta}}(\mathbf{y}_T), i = 1, ..., L$.
 - 3. Each previous history $\mathbf{Y}^{(s-1,i)}$ is replaced by the new history $\mathbf{Y}^{(s,i)}$ with probability: $\min\left\{1, \frac{P_{\widehat{\boldsymbol{\beta}}}[\mathbf{Y}^{(s,i)}|\mathbf{y}_T]Q_{\theta}(\mathbf{y}_T)[\mathbf{Y}^{(s-1,i)}]}{P_{\widehat{\boldsymbol{\beta}}}[\mathbf{Y}^{(s-1,i)}|\mathbf{y}_T]Q_{\theta}(\mathbf{y}_T)[\mathbf{Y}^{(s,i)}]}\right\} = \min\left\{1, \frac{P_{\widehat{\boldsymbol{\beta}}}[\mathbf{Y}^{(s,i)}]Q_{\theta}(\mathbf{y}_T)[\mathbf{Y}^{(s-1,i)}]}{P_{\widehat{\boldsymbol{\beta}}}[\mathbf{Y}^{(s-1,i)}]Q_{\theta}(\mathbf{y}_T)[\mathbf{Y}^{(s,i)}]}\right\}$

> The Markov chain $\langle Y^{(s,i)} \rangle$ provably converges to the posterior distribution $P_{\hat{B}}|y_T$.

 $\mathbb{E}_{\mathbf{Y}\sim \mathbf{P}_{\widehat{\boldsymbol{\beta}}}|\mathbf{y}_{T}}[h_{u}^{x}(\mathbf{Y})]\approx \frac{1}{L}\sum_{i=1}^{L}h_{u}^{x}(\mathbf{Y}^{(s,i)}), \qquad s\rightarrow +\infty.$

Learning an Optimal Proposal for M–H MCMC

• The *convergence rate* of M–H MCMC depends critically on the proposal Q_{θ} . $\succ Q_{\theta}(\mathbf{y}_T)$ closer to $P_{\widehat{\boldsymbol{\beta}}}|\mathbf{y}_T \Longrightarrow$ Higher rate of convergence.

• Our solution: Use a GNN to learn an **optimal** proposal. $Q_{\boldsymbol{\theta}}(\boldsymbol{y}_T)[\cdot]$

• Objective function: (a corollary of our Theorem 5; see our paper for details) $\min_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{Y} \sim P_{\widehat{\boldsymbol{\rho}}}} \left[-\log Q_{\boldsymbol{\theta}}(\boldsymbol{y}_T)[\boldsymbol{Y}] \right].$

REVISITING DIFFUSION HISTORY MLE

NP-Hardness of Diffusion Parameter Estimation

MAIN EXPERIMENTS

Performance for Real-World Diffusion

<u>k</u>

Table 4: Results for real-world diffusion. "OOM" indicates "out of memory."

- To estimate diffusion parameters β , a conventional approach is MLE: $\max_{\widehat{\boldsymbol{\rho}}} P_{\widehat{\boldsymbol{\beta}}}[\boldsymbol{y}_T]. \quad (\star)$
- **Theorem 1** (informal): Computing the probability $P_{\hat{R}}[y_T]$ is NP-hard.

*<u>Think deeper</u>: Is there an algo for $\hat{\beta}$ MLE without computing $P_{\hat{\beta}}[y_T]$?

 $\succ 0\left(\binom{T+1}{2}^n(n+m)\right)$ time.

0.0004

0.0002

mulation.

Likelihood under

(a) $P_{\beta}[Y]$ vs $P_{\hat{\beta}}[Y]$ in the MLE for-

• **Theorem 2** (informal): *Diffusion parameter MLE* (*) *is NP-hard.*

 \Rightarrow Implication: Estimation error of β is unavoidable.

Sensitivity to Estimation Error of Diffusion Parameters

- *MLE formulation* for diffusion history reconstruction: $\max_{\widehat{\mathbf{Y}}\in \operatorname{supp}(P|\mathbf{y}_T)} P_{\widehat{\boldsymbol{\beta}}}[\widehat{\mathbf{Y}}].$
- **Theorem 3**. Under the SIR model and mild conditions, for all possible history **Y**, we have:

$$\frac{\partial}{\partial \beta^{\mathrm{I}}} P_{\beta}[Y] = \Theta\left(\frac{1}{\beta^{\mathrm{I}}}\right) P_{\beta}[Y], \qquad \frac{\partial}{\partial \beta^{\mathrm{R}}} P_{\beta}[Y] = \Theta\left(\frac{1}{\beta^{\mathrm{R}}}\right) P_{\beta}[Y].$$

 \succ Large for small β **\mathbf{\mathbf{\hat{s}}}** Real-world diffusion typically has **small** true $\boldsymbol{\beta}$.

BrFarmers is very close to SI.

DITTO: Consistently strong performance across all datasets.

MLE/Supervised: Bad when real diffusion deviates from SI/SIR.

Comparison with MLE-Based Methods Table 5: Comparison with MLE-based methods on synthetic SI and SIR diffusion. *We use GRIN trained with true β as the ideal

rformance and calculate <i>Gap</i> w.r.t. this ideal performance.																	
Туре	Method	BA-SI			ER-SI				Oregon2-SI				Prost-SI				
		F1↑	Gap↓	NRMSE↓	Gap↓	F1↑	Gap↓	NRMSE↓	Gap↓	F1↑	Gap↓	NRMSE↓	Gap↓	F1↑	Gap↓	NRMSE↓	Gap↓
Ideal	GRIN	.8404*	—	.2123*	-	.8317*	_	.2166*	_	.8320*	-	.2249*	-	.8482*	-	.2155*	_
MLE	DHREC	.6026	28.30%	.4644	118.75%	.6281	24.48%	.4495	107.53%	.6038	27.43%	.4101	82.35%	.6558	22.68%	.4138	92.02%
	CRI	.7502	10.73%	.3012	41.87%	.7797	6.25%	.2744	26.69%	.8183	1.65%	.2438	8.40%	.8083	4.70%	.2491	15.59%
Barycenter	DITTO (ours)	.8384	0.24%	.2139	0.75%	.8269	0.58%	.2225	2.72%	.8280	0.48%	.2289	1.78%	.8327	1.83%	.2317	7.52%
Tyme	Mathad	BA-SIR			ER-SIR			Oregon2-SIR				Prost-SIR					
True	Mathad		В	A-SIK			Ľ	R-SIR			Oleg	30112-31K			Pro	USI-SIK	
Туре	Method	F1↑	B Gap↓	A-SIR NRMSE↓	Gap↓	F1↑	Gap↓	NRMSE↓	Gap↓	F1↑	Gap↓	NRMSE↓	Gap↓	F1↑	Pro Gap↓	NRMSE↓	Gap↓
Type Ideal	Method GRIN	F1↑ .7867*	B Gap↓ _	A-SIR NRMSE↓ .1692*	Gap↓ —	F1↑ .7626*	Gap↓ —	NRMSE↓ .2484*	Gap↓ —	F1↑ .8024*	Gap↓ —	NRMSE↓ .1651*	Gap↓ _	F1↑ .8067*	Pro Gap↓ —	NRMSE↓ .1652*	Gap↓ —
Type Ideal	Method GRIN DHREC	F1↑ .7867* .5080	B Gap↓ 	A-SIK NRMSE↓ .1692* .4722	Gap↓ 	F1↑ .7626* .5500	Gap↓ 	R-51K NRMSE↓ .2484* .4423	Gap↓ 78.06%	F1↑ .8024* .6044	Gap↓ - 24.68%	.1651* .4478	Gap↓ 	F1↑ .8067* .6268	Pro Gap↓ 	SSI-SIR NRMSE↓ .1652* .4326	Gap↓ 161.86%
Type Ideal MLE	Method GRIN DHREC CRI	F1↑ .7867* .5080 .5994	B Gap↓ 	A-SIK NRMSE↓ .1692* .4722 .3356	Gap↓ 	F1↑ .7626* .5500 .6129	Gap↓ — 27.88% 19.63%	R-51K NRMSE↓ .2484* .4423 .3109	Gap↓ 78.06% 25.16%	F1↑ .8024* .6044 .5761	Gap↓ - 24.68% 28.20%	0112-51K NRMSE↓ .1651* .4478 .3576	Gap↓ 171.23% 116.60%	F1↑ .8067* .6268 .5738	Pro Gap↓ 	0551-51R NRMSE↓ .1652* .4326 .3406	Gap↓ 161.86% 106.17%
Type Ideal MLE Barycenter	Method GRIN DHREC CRI DITTO (ours)	F1↑ .7867* .5080 .5994 .7783	B Gap↓ 35.43% 23.81% 1.07%	A-SIR NRMSE↓ .1692* .4722 .3356 .1633	Gap↓ — 179.08% 98.35% — 3.49%	F1↑ .7626* .5500 .6129 .7734	Gap↓ — 27.88% 19.63% —1.42%	R-SIR NRMSE↓ .2484* .4423 .3109 .1679	Gap↓ 78.06% 25.16% - 32.41%	F1↑ .8024* .6044 .5761 .7928	Gap↓ 24.68% 28.20% 1.20%	0.12-31K NRMSE↓ .1651* .4478 .3576 .1707	Gap↓ 171.23% 116.60% 3.39%	F1↑ .8067* .6268 .5738 .7929	Pro Gap↓ 22.30% 28.87% 1.71%	St-Sik NRMSE↓ .1652* .4326 .3406 .1690	Gap↓ — 161.86% 106.17% 2.30%

DITTO: Stably achieves the strongest performance.

MLE: Performance vary largely across datasets due to **sensitivity**.

