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Abstract
Mixup, which generates synthetic training sam-
ples on the data manifold, has been shown to
be highly effective in augmenting Euclidean data.
However, finding a proper data manifold for graph
data is non-trivial, as graphs are non-Euclidean
data in disparate spaces. Though efforts have
been made, most of the existing graph mixup
methods neglect the intrinsic geodesic guaran-
tee, thereby generating inconsistent sample-label
pairs. To address this issue, we propose GEOMIX
to mixup graphs on the Gromov-Wasserstein
(GW) geodesics. A joint space over input graphs
is first defined based on the GW distance, and
graphs are then transformed into the GW space
through equivalence-preserving transformations.
We further show that the linear interpolation of
the transformed graph pairs defines a geodesic
connecting the original pairs on the GW manifold,
hence ensuring the consistency between generated
samples and labels. An accelerated mixup algo-
rithm on the approximate low-dimensional GW
manifold is further proposed. Extensive experi-
ments show that the proposed GEOMIX promotes
the generalization and robustness of GNN models.

1. Introduction
In the era of big data and AI, graphs are ubiquitous in various
domains carrying rich information. Graph Neural Networks
(GNNs) have achieved remarkable success in enormous
graph learning tasks, including graph classification (Xu
et al., 2018), node classification (Kipf & Welling, 2017;
Xu et al., 2022a), link prediction (Zhang & Chen, 2018;
Yan et al., 2024c;b), and many more. For (semi-)supervised
learning tasks, the superior performance of GNNs largely
depends on the training graphs, which are often noisy and

1University of Illinois Urbana-Champaign 2University of
Michigan, Ann Arbor. Correspondence to: Hanghang Tong
<htong@illinois.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

scarce, inevitably inducing model over-fitting (Ding et al.,
2022). To address this issue, graph data augmentation has
been adopted for better model generalization by generating
synthetic training graphs.

Mixup (Zhang et al., 2018) has achieved great success in
computer vision (Zhang et al., 2018; Verma et al., 2019)
and natural language processing (Guo et al., 2019a; Guo,
2020; Chen et al., 2020) in improving model generalization
and robustness. The general idea is to linearly interpolate
sample pairs on the data manifold, which defines a geodesic
between sample pairs in the Euclidean space. However,
mixup on graph data is non-trivial due to three key chal-
lenges. First (space disparity), as different graphs lie in
disparate spaces, it is a prerequisite to find a joint space of
graphs, i.e., space of spaces (Sturm, 2012), for mixup. Sec-
ond (non-Euclidean data), even with a joint graph space, it
is still challenging to interpolate graph pairs as graphs vary
in sizes and are often not well-aligned (Han et al., 2022).
Third (sample–label consistency), it is essential to ensure
the consistency between mixup samples and labels, i.e., sim-
ilar samples should share similar labels (Guo et al., 2019b;
Kim et al., 2020; Liu et al., 2023a), but it remains unknown
how to define and ensure such consistency for graph data.

To address the space disparity and non-Euclidean issues,
existing methods have been focusing on design practical
interpolation so that mixup in the graph space can be imple-
mented in a similar way as mixup in the Euclidean space.
For example, (Wang et al., 2021; Verma et al., 2021) trans-
form graphs into vector embeddings and (Han et al., 2022;
Guo & Mao, 2021; Ling et al., 2023) transform graph into
well-aligned pairs, and mixup is performed between the
transformed counterparts. A fundamental assumption be-
hind these approaches is that the original graph and the
transformed graph are equivalent so that the mixup sam-
ples between transformed graphs correspond to the mixup
samples between the original graphs. Nevertheless, most of
the transformations are not equivalence-preserving, thereby
facing the risk of generating inconsistent sample–label pairs
that hurt, as opposed to benefit, model training. Therefore,
we take a step further and ask:

What kind of interpolation guarantees sample–label consis-
tency in graph mixup from the geodesic perspective?
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Contributions. In this paper, we address the sample–label
consistency issue in graph mixup and propose a novel algo-
rithm named GEOMIX to interpolate graphs on the Gromov–
Wasserstein (GW) geodesics. A comparison between the
proposed GEOMIX and existing practical graph interpola-
tion methods is shown in Figure 1. We first define sample–
label consistency based on the GW distance, and show
that interpolating graphs on the GW geodesics guarantees
such consistency. We then construct a GW space (Mémoli,
2011; Sturm, 2012) as a unified graph space, and employ
equivalence-preserving transformations (EPT) to transform
graphs to their equivalent counterparts that are well-aligned
in the GW space. We theoretically prove that the linear inter-
polation of the transformed graph pairs defines a geodesic
connecting the original graph pairs in the GW space, hence
ensuring the consistency between mixup samples and labels.
For faster computation, an accelerated algorithm is intro-
duced to mixup graphs on the approximate GW geodesic in
the low-dimensional GW space, achieving quadratic time
complexity w.r.t. the number of nodes in the input graph.
Extensive experiments on real-world graphs show that GE-
OMIX improves GNN generalization and robustness, achiev-
ing up to 6.6% outperformance compared with the state-of-
the-art graph mixup methods.

The rest of the paper is organized as follows. Section 2 in-
troduces and analyzes the background knowledge on mixup
and GW geometry. Section 3 introduces our proposed GE-
OMIX followed by experiments in Section 4. Related works
and conclusions are given in Sections 5 and 6, respectively.

2. Preliminaries
2.1. Notations

We use bold uppercase letters for matrices (e.g., A), bold
lowercase letters for vectors (e.g., s), calligraphic letters
for sets (e.g., G), and lowercase letters for scalars (e.g.,
�). The element (i; j) of a matrixA is denoted asA(i; j).
The transpose of A is denoted by the superscript T. The
simplex histogram with n bins is denoted as �n = f� 2
R+
n j
Pn
i=1 �(i) = 1g. A coupling is denoted as �(�; �), and

the inner product is denoted as h�; �i. A graph is represented
as a tuple G = (A;�) where A 2 Rn�n is the adjacency
matrix, and � 2 �n is the node weight. Without any prior
knowledge on nodes, we default the node weight as uniform
� = 1n

n . We denote the node set of a graph G as V(G).

2.2. Graph Mixup

Mixup is a simple yet effective augmentation method for
Euclidean data like images. Given a pair of samples x1;x2

with their labels y1;y2, mixup generates synthetic samples
by linearly interpolating the sample pairs and their labels:

x(�) = (1� �)x1 + �x2;y(�) = (1� �)y1 + �y2: (1)

Figure 1. A comparison between GEOMIX and practical inter-
polation. GEOMIX (blue line) adopts equivalence-preserving
transformations (EPT) to transform G1,G2 into two well-aligned
~G1 2 JG1K, ~G2 2 JG2K, and then mixup on the GW geodesics
γ(λ) = J ~G(λ)K, hence ensuring sample–label consistency. While
practical interpolation (green line) often ignore the equivalence
between original and transformed graphs, resulting in inconsistent
sample–label pairs, e.g., ~G(0.5) is a 2-block graph but is labelled
as half 2-block half 3-block. Best viewed in color.

In the graph setting, in order to interpolate graphs with
different sizes that are not well-aligned, most of the exist-
ing methods follow a practical interpolation approach by
interpolating the well-aligned transformed graphs, that is

~G(�) = (1��)�1(G1)+��2(G2); ~y(�) = (1��)y1 +�y2;

where �1;�2 are graph transformations. For example, in
G-mixup (Han et al., 2022), �1;�2 map original graphs to
the well-aligned graphons; in M-mixup (Wang et al., 2021),
�1;�2 are neural encoders encoding graphs into the same
hidden space; in S-mixup (Ling et al., 2023), �1 corresponds
to the soft alignment matrix between G1 and G2.

2.3. The Gromov–Wasserstein Space

Gromov–Wasserstein (GW) distance. The GW distance
is a powerful approach to measure the distance between two
spaces. We formally define the GW distance in the graph
context as follows. Given two graphs G1 = (A1;�1) and
G2 = (A2;�2), the p-GW distance between G1 and G2 is
defined as (Mémoli, 2011):

dGW(G1;G2) = min
T2�(�1;�2)

�
"A1;A2

(T )
�

1=p; (2)

where p is the order of the GW distance, and

"A1;A2
(T ) =

X
i;j;k;l

jA1(i; j)�A2(k; l)jpT (i; k)T (j; l):

Intuitively, the GW distance yields an optimal matching
T between two graphs regarding the connectivity structure
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(i.e.,A 1(i; j )� A 2(k; l )), together with a distance measured
by the sum of node pair connectivity distances weighted by
T . In this paper, we adopt the 2-GW distance which has the
following matrix form (Peyŕe et al., 2016):

"A 1 ;A 2(T )= Tr(A 2
1� 1� T

1)+ Tr(� 2� T
2A 2

2
T
)� 2Tr(A 1T A T

2T T):

GW geodesics.Note that the GW distance is only apseu-
dometricbut not ametric. To de�ne geodesics, we employ
a standard procedure (Howes, 1995) to identify an induced
metricd�

GW. De�ne an equivalence relation� over graphs:
G1 � G 2 iff dGW(G1; G2) = 0 . Let JGK:= fG0 : G0 � Gg
denote the equivalence class of graphGw.r.t. � , and letG
denote the space of equivalence classes w.r.t.� . Then, the
induced metricd�

GW : G � G ! R� 0 is de�ned by

d�
GW(JG1K; JG2K) := dGW(G1; G2):

Note thatd�
GW is well de�ned asdGW(G1; G2) is the same

for any G1 2 JG1K; G2 2 JG2K(Howes, 1995). Based on
the notion of equivalence class, an equivalence-preserving
graph transformation is de�ned as follows:

De�nition 2.1. Equivalence-Preserving Transformation.
Given a graph spaceG, a graph transformation� : G ! G
is equivalence-preserving if any graphG 2 G is equivalent
to its transformed graph�( G), i.e.,G � �( G); 8G 2 G.

De�nition 2.2. Gromov–Wasserstein Geodesics.
A curve  : [0; 1] ! G is called aGW geodesicfrom
JG1Kto JG2Kiff  (0) = JG1K,  (1) = JG2K, and for every
� 1; � 2 2 [0; 1],

d�
GW( (� 1);  (� 2)) = j� 1 � � 2j � d�

GW(JG1K; JG2K): (3)

2.4. Geodesic Graph Mixup

It is essential to ensure the consistency between mixup sam-
ples and labels to avoid suspicious supervision signals that
may mislead the model. Intuitively, if two graphs are similar
to each other, we expect them to share similar labels. Based
on the GW distance, we de�ne sample–label consistency as
follows.

De�nition 2.3. Sample–Label Consistency.
Given two graphsG1; G2 with labelsy1; y2, the mixup
samples~G( � ) and labels~y ( � ) are consistent iff for every
� 2 [0; 1],

dGW( ~G( � ) ; G1)k~y ( � ) � y2k = dGW( ~G( � ) ; G2)k~y ( � ) � y1k:

When the transformations ignore the equivalence-preserving
property, as most of the existing graph mixup methods
do, the sample–label consistency is clearly violated as
d( ~G(0) ; G1) > 0 = k~y (0) � y1k. The following proposi-
tion states that samples on the GW geodesics satisfy the
sample–label consistency.

Proposition 2.4. The mixup samples~G( � ) and labels~y ( � )

are consistent if~G( � ) are on the geodesic connecting origi-
nal samplesG1; G2.

It is easy to verify the sample–label consistency for samples
on the GW geodesics as follows:

dGW( ~G( � ) ;G1)= �d GW(G1 ;G2); dGW( ~G( � ) ;G2)=(1 � � )dGW(G1 ;G2)
k ~y ( � ) � y1k= � ky1 � y2k; k ~y ( � ) � y2k=(1 � � )ky1 � y2k

:

Therefore, we study the geodesic graph mixup problem as
follows.

De�nition 2.5. Geodesic Graph Mixup.
Given two graphsG1; G2, the geodesic graph mixup problem
seeks for a GW geodesic (� ) = J~G( � ) KconnectingG1; G2

such that Eq. (3) is satis�ed.

3. Methodology

In this section, we present and analyze our proposedGE-
OM IX . To generalize the Euclidean mixup to graphs, we
�rst propose to mixup graphs on the exact GW geodesics in
Section 3.1. To avoid the high dimensionality of exact GW
geodesics, an accelerated algorithm on the approximated
GW geodesics is introduced in Section 3.2.

3.1. Mixup on Exact GW Geodesics

Most of the existing graph mixup methods generalize mixup
from the practical interpolation perspectives, which may
induce inconsistency between the mixup samples and labels.
Instead, we derive a more principled generalization of mixup
from ageodesicperspective. We view Euclidean mixup in
Eq. (1) as theEuclidean geodesicconnectingx 1 andx 2.
From this perspective, a natural generalization for graphs is
theGW geodesicconnecting two graphs. Thus, it suf�ces
to �nd appropriate transformations� 1; � 2 such thatJ(1 �
� )� 1(G1) + � � 2(G2)Kis the GW geodesic connecting two
equivalence classesJG1K; JG2K.

Thanks to the advancement in the optimal transport theory,
the concept of geodesic has been generalized to the GW
space to handle non-Euclidean data (Mémoli, 2011). Ac-
cording to Theorem 3.1 in (Sturm, 2012), given two graphs
G1; G2, the 2-GW geodesic connectingJG1K; JG2K2 G is
of the form(J~G( � ) K)0� � � 1 where ~G( � ) = ( ~A ( � ) ; ~� ( � ) ) is a
graph withV( ~G( � ) ) = V(G1) � V (G2) de�ned by Eq. (4).

~A ( � ) := (1 � � )A 1 
 1n 2 � n 2 + � 1n 1 � n 1 
 A 2

~� ( � ) = vec(OT(G1; G2))
(4)

whereOT(G1; G2) is the optimal coupling betweenG1; G2

given by the GW distance in Eq.(2). This theorem in-
spires us to consider two linear transformationsP1 2
Rn 1 � n 1 n 2 ; P2 2 Rn 2 � n 1 n 2 transformingG1; G2 to ~G1 =
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