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ABSTRACT

Graph neural networks (GNNs) have emerged as a powerful approach to modeling
graph-structured data and demonstrated remarkable success in many real-world
applications such as complex biological network analysis, neuroscientific anal-
ysis, and social network analysis. However, existing GNNs often struggle with
heterophilic graphs, where connected nodes tend to have dissimilar features or
labels. While numerous methods have been proposed to address this challenge,
they primarily focus on architectural designs without directly targeting the root
cause of the heterophily problem. These approaches still perform even worse than
the simplest multi-layer perceptrons (MLPs) on challenging heterophilic datasets.
For instance, our experiments show that 23 latest GNNss still fall behind the MLP
on the ACTOR dataset. This critical challenge calls for an innovative approach
to addressing graph heterophily beyond architectural designs. To bridge this gap,
we propose and study a new and unexplored paradigm: directly increasing the
graph homophily via a carefully designed graph transformation. In this work,
we present a simple yet effective framework called GRAph homoPHIly boosTEr
(GRAPHITE) to address graph heterophily. To the best of our knowledge, this
work is the first method that explicitly transforms the graph to directly improve
the graph homophily. Stemmed from the exact definition of homophily, our pro-
posed GRAPHITE creates feature nodes to facilitate homophilic message passing
between nodes that share similar features. Furthermore, we both theoretically
and empirically show that our proposed GRAPHITE significantly increases the
homophily of originally heterophilic graphs, with only a slight increase in the
graph size. Extensive experiments on challenging datasets demonstrate that our
proposed GRAPHITE significantly outperforms state-of-the-art methods on het-
erophilic graphs while achieving comparable accuracy with state-of-the-art meth-
ods on homophilic graphs. Furthermore, our proposed graph transformation alone
can already enhance the performance of homophilic GNNSs on heterophilic graphs,
even though they were not originally designed for heterophilic graphs. Our code is
publicly available athhttps://github.com/g-rz/ICLR26—-GRAPHITE.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as a powerful class of models for learning on topo-
logically structured data. Their ability to incorporate graph topology and node-level attributes has
enabled them to achieve state-of-the-art performance in a wide range of applications. These include
protein function prediction, where GNNs model complex biological networks (You et al., 2021}
Réau et al., |2023)); neuroscientific analysis, where they are used to model brain networks (Li et al.,
2023al); and social network analysis, where they help uncover patterns among users (Li et al.,2023c).

A critical challenge that many GNNs are faced with is that real-world networks can exhibit het-
erophily, where connected nodes tend to have dissimilar features or labels. Examples include
protein—protein interaction networks where different types of proteins interact (Zhu et al., 2020),
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Figure 1: Illustration of our proposed GRAPHITE. Feature nodes/edges facilitate more homophilic
message passing. For instance, feature node z; facilitates homophilic message passing between
nodes vy, v, and feature node x5 facilitates homophilic message passing among nodes vs, v4, Us.

or online marketplace networks where buyers connect with sellers rather than other buyers (Pan-
dit et al., 2007). Standard GNN architectures (Kipf & Wellingl, 2016; [Wu et al.l [2019; |Velickovié
et al., |2017; |Hamilton et al., 2017; |Chen et al., |2020; |Abu-El-Haija et al., 2019), with their heavy
reliance on neighborhood aggregation, often struggle with heterophilous graphs since aggregating
features from dissimilar neighbors can dilute or distort node representations. Existing methods
for heterophilic graphs mainly focus on designing new GNN architectures as workarounds for het-
erophilic graphs, such as separating ego and neighbor embeddings (Zhu et al.| |2020; Zhang et al.,
2023)), incorporating multi-hop information via learnable weights (Chien et al., 2020; |Dong et al.,
2024), and adaptive self-gating to leverage both low- and high-frequency signals (Bo et al., [2021).
More recent solutions introduce frequency-based filtering to handle both homophily and heterophily
or leverage adaptive residual connections to further enhance flexibility (Xu et al., 2023;2024a; Yan
et al.,[2024).

Despite plenty of architectural advances, many GNNs still perform even worse than the simplest
multi-layer perceptrons (MLPs) on challenging heterophilic graphs. For instance, Table [2| shows
that 23 latest GNNss still fall behind the MLP on the ACTOR dataset. This critical challenge calls for
an innovative approach to addressing graph heterophily beyond architectural designs.

To bridge this gap, we propose and study a new and unexplored paradigm: directly increasing the
graph homophily via a carefully designed graph transformation. In this work, we present a simple yet
effective framework called GRAph homoPHIly boosTEr (GRAPHITE) to address graph heterophily.
To the best of our knowledge, this work is the first method that explicitly transforms the graph to
directly improve the graph homophily.

Our key idea is rooted in the exact definition of homophily/heterophily. In a homophilic/heterophilic
graph, nodes that share similar features are more/less likely to be adjacent, respectively. Therefore, a
natural idea to increase the graph homophily is to create “shortcut” connections between nodes with
similar features so as to facilitate homophilic message passing. However, naively adding mutual
connections between such node pairs can drastically increase the number of edges. To reduce the
number of “shortcut” edges, we propose to connect such node pairs indirectly instead. In particular,
we introduce feature nodes as “hubs” and connect graph nodes to their corresponding feature nodes.
We further theoretically show that our proposed method can provably enhance the homophily of
originally heterophilic graphs without increasing the graph size much.

Our main contributions are summarized as follows:

* New paradigm. We propose and study a new and unexplored paradigm: provably increas-
ing the graph homophily directly via non-learning-based graph transformation. This paper
is the first work on this paradigm to the best of our knowledge.

* Proposed method. We propose a simple yet effective method called GRAPHITE, which
creates feature nodes as “shortcuts” to facilitate homophilic message passing between
nodes with similar features.
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* Theoretical guarantees. We theoretically show that GRAPHITE can provably enhance
the homophily of originally heterophilic graphs with only a slight increase in size.

* Empirical performance. Extensive experiments on challenging datasets demonstrate the
effectiveness of our proposed GRAPHITE. GRAPHITE significantly outperforms state-of-
the-art methods on heterophilic graphs while achieving comparable accuracy with state-
of-the-art methods on homophilic graphs. Furthermore, our proposed graph transformation
alone can already enhance the performance of homophilic GNNs on heterophilic graphs.

2 PRELIMINARIES

2.1 NOTATION

An undirected graph with discrete node features can be represented as a triple G = (V, £, X ), where
V = {v1,..., vy} denotes the node set, & C V x V denotes the edge set, X € {0,1}¥*V isa
binary node feature matrix representing discrete node features, and X = {1,...,|X|} is the feature
set containing all the discrete node features. In addition to that, each graph node v; € V has a node
label y,,, € ), where ) is the label set with C' = || classes.

2.2  PROBLEM DEFINITION

In this paper, we study two key problems: (i) how to transform a graph to increase its homophily
and (ii) how to perform node classification on a heterophilic graph datasets. Formally, we introduce
the problem definitions as follows.

Problem 1 (boosting graph homophily). Given a highly heterophilic graph, transform the graph to
increase its homophily. Input: a heterophilic graph G. Output: a transformed graph G* with higher
homophily.

Problem 2 (semi-supervised node classification on a heterophilic graph). Given a heterophilic
graph and a set of labelled nodes, train a model to predict the labels of unlabelled nodes. In-
put: (i) a heterophilic graph G = (V, &, X); (ii) a labelled node set Vi, C V whose node labels
[Yo; Jv; e, are available. Output: the predicted labels of unlabeled nodes V \ V.

3 PROPOSED METHOD: GRAPHITE

In this section, we propose a simple yet effective graph transformation method called GRAph
homoPHIly boosTEr (GRAPHITE) that can efficiently increase the homophily of a graph. In Sec-
tion we will introduce the motivation of our proposed GRAPHITE. First, we will present the
design of our proposed method GRAPHITE. Then, we will describe the neural architecture of our
proposed method. Due to the page limit, proofs of theoretical results are deferred to the appendix.

3.1 MOTIVATION: NATVE HOMOPHILY BOOSTER

Graph heterophily is a ubiquitous challenge in graph-based machine learning. On a highly het-
erophilic graph, many neighboring nodes exhibit dissimilar features or belong to different classes.
As a result, graph heterophily limits the effectiveness of GNN message passing, as standard aggre-
gation schemes might fail to capture meaningful patterns in heterophilic neighbors.

Existing methods for heterophilic graphs mainly focus on designing workarounds such as new archi-
tectures or learning paradigms for heterophilic graphs, including adaptive message passing, higher-
order neighborhoods, or alternative propagation mechanisms that leverage both local and global
graph structures.

In contrast to existing workaround methods, we propose a new method that aims to directly increase
the homophily of the graph via a specially designed graph transformation. To the best of our knowl-
edge, this work is the first method that explicitly transforms the graph to improve the homophily of
the graph.

Our idea is rooted in the exact definition of homophily and heterophily. In a heterophilic graph,
nodes that share similar features are more likely to be non-adjacent. However, in a homophilic
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Figure 2: Our proposed GRAPHITE significantly increases the homophily of originally heterophilic
graphs. We report two latest homophily metrics: feature homophily (Jin et al., 2022)) and adjusted
homophily (Platonov et al., [2024]).

graph, nodes that share similar features should be more likely to be neighbors. Therefore, a natural
idea to increase the homophily of the graph is to create “shortcut” connections between nodes with
similar features, which will facilitate homophilic message passing between them.

Before we introduce the proposed method, let’s consider the following naive approach to imple-
menting the aforementioned idea: For each pair of nodes v;, v; € V, if they share at least a feature
(.e., || X [vi, ] A X [v5,:]]|c > 0), we add a “shortcut” edge (v;, v;) between them. Let’s call this ap-
proach the naive homophily booster (NHB). The following Theorem [T shows that NHB can indeed
increase the homophily of the graph under mild and realistic assumptions.

Theorem 1 (naive homophily booster). Given a heterophilic graph G = (V, &, X), let E' denote
the set of edges after adding the NHB “shortcut” edges, and let GT := (V, Y, X)) denote the graph
transformed by NHB. Under mild and realistic assumptions in Appendix|[D.1} we have

hom(G") > hom(G), (1)
ET] = €] < O(IV]?). (2)

However, Equation (2) also shows that NHB is extremely inefficient despite its effectiveness in
increasing homophily. For instance, even if the graph has only 2,000 nodes, NHB can add as many
as 1,999,000 “shortcut” edges. The plenty of “shortcut” edges can drastically slow down the training
and the inference process of GNNs. Hence, this naive approach is computationally impractical for
GNNs. To address this computational challenge, we will instead propose an efficient homophily
booster via a more careful design of “shortcut” edges.

3.2 EFFICIENT GRAPH HOMOPHILY BOOSTER

To address the computational inefficiency of the motivating naive approach above, we propose
an efficient, simple yet effective graph transformation method called GRAph homoPHIly boosTEr
(GRAPHITE) in this subsection.

Note that the large number of NHB “shortcut” edges is because NHB directly connects nodes with
similar features. Since there are O(|V|?) node pairs in a graph, then the total number of added NHB
“shortcut” edges can be as large as O(|V|?).

To reduce the number of “shortcut” edges, we propose to connect such node pairs indirectly instead.
In particular, if we can create a few auxiliary “hub” nodes so that all such node pairs are indirectly
connected through the “hub” nodes, then we will be able to significantly reduce the number of
“shortcut” edges at only a small price of adding a few “hub” nodes. Therefore, we need to develop
an appropriate design of the “hub” nodes.

Graph transformation. Following the aforementioned motivation, we propose to create a feature
node xy, for each feature k to serve as the “hub” nodes. Let Vx denote the set of feature nodes:

Vy i={z : k€ X}. €))

To distinguish feature nodes Vy from nodes V in the original graph, we call V graph nodes from
now on. For each graph node v; € V, if graph node v; has feature k (i.e., X [v;, k] = 1), we add an
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edge (v;, ) to connect the graph node v; and the feature node xj, € Vy, and we call it a feature
edge. Let £y denote the set of feature edges:

Ex :={(vi,xr) 1 v; €V, 2, € Va, X[vi, k] =1} TV x Vy.
To distinguish feature edges £y from the original edges £, we call £ graph edges from now on.

Finally, we define the transformed graph G* = (V*,€* X ™) as follows. The nodes V* of the
transformed graph G* are the original graph nodes V' and the added feature nodes Vy: V* := VUVy.
The edges £* of the transformed graph G* are the original graph edges £ and the added feature edges
Ex: £ = & U Ex. We can also equivalently define the edges of the transformed graph G* by its
adjacency matrix. Let A denote the adjacency matrix of the original graph G. Then, the adjacency
matrix A* of the transformed graph G* can be expressed in a block matrix form:
A X }

A — [XT : @)

It remains to define node features X* € RY *¥ of the transformed graph. For each graph node
v; € V, we use its original features as its node features: X *[v;, :] := X [v;, :]. For each feature node
x, € Vx, we define its node feature as the average feature vector among the graph nodes v; that are
connected to feature node xj:

X[, ] == A ) S Xviil. (5)

vi:(vi,op)EEX

Our proposed graph transformation GRAPHITE is illustrated in Figure [I, 1In this example,
{v1, va, v3,v4,v5} are the graph nodes, where vy, vo belong to one class, and vs, v4, vs belong to
the other class. Our proposed GRAPHITE adds feature nodes z1, xs, x3 to the graph. We can see
that feature node x; facilitates homophilic message passing between v1, ve, and that feature node
x9 facilitates homophilic message passing among vs, vy, Us.

Theoretical guarantees. The transformed graph G* enjoys a few theoretical guarantees. First,
an important property of the feature edges is that every pair of nodes that share features can be
connected through feature edges within two hops, as formally stated in Observation [2{ This ensures
that nodes with similar features are close to each other on the transformed graph G*, facilitating
homophilic message passing.

Observation 2 (two-hop indirect connection). For each pair of nodes u,v € V, if they share at least
afeature (i.e., | X [v;, JAX [v5,:]||sc > 0), then v; and v; are two-hop neighbors on the transformed
graph G*.

Furthermore, we theoretically show that our proposed graph transformation GRAPHITE can in-
crease the homophily of the graph without increasing the size of the graph much, as formally stated
in Theorem

Theorem 3 (efficient homophily booster). Given a heterophilic graph G = (V,€,X), let G* :=
(V*,&*, X™*) denote the graph transformed by our proposed GRAPHITE. Under mild and realistic
assumptions in Appendix[D.1| we have

hom(G*) > hom(G), (6)
V[ <O(V]), [E] < O(E]). @)

The effectiveness of our proposed GRAPHITE is also empirically validated in Section .3 As
shown in Figure 2] our proposed GRAPHITE significantly increases the homophily of originally
heterophilic graph.

3.3 NEURAL ARCHITECTURE

The transformed graph G* can be readily fed into existing GNNs to boost their performance, even
when the GNNs were originally designed for homophilic graphs, as demonstrated in Table[d Mean-
while, to maximize the GNN performance on the transformed graph G*, we introduce a GNN archi-
tecture specially designed for the transformed graph in this subsection.
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Table 1: Summary of dataset statistics. We use four heterophilic graphs and two homophilic graphs.

L. Heterophilic Graphs Homophilic Graphs
Statistic ACTOR SQUIRREL-F CHAMELEON-F MINESWEEPER | CORA  CITESEER
# Nodes 7600 2223 890 10000 2708 3327
# Edges 33544 46998 8854 39402 5429 4732
# Features 931 2089 2325 7 1433 3703
# Classes 5 5 5 2 7 6
Homophily | 0.0028 0.0086 0.0295 0.0094 0.7711 0.6707

To help the GNN distinguish graph nodes V from feature nodes Vx, we use different edge weights
for different edges. As a reference weight, suppose that graph edges £ have weight wg := 1. Let
wy > 0 denote the weight of feature edges £x. Following GCN (Kipf & Welling| 2016), we also
use self-loops in GNN message passing; let wy > 0 denote the weight of self-loops.

Let d,, denote the weighted degree of each node u € V*. Specifically, for each graph node v; € V,
dy i=wo+ Y we+ > waj ®)
(vi,v)€E (vi,zp)EEX
and for each feature node x; € Vy,

dy, = wo + Z Wy )}

(vi, xR )EEX

Inspired by FAGCN (Bo et al.| [2021), we use a self-gating mechanism in GNN aggregation. For
each node u € V*, let h,, € R™ denote the embedding of node u before GNN aggregation, where
m is the embedding dimensionality. Then, the self-gating score c, ., between two nodes u, v’ € V*
is defined as

a'(hy || hy) + b)

T

Q. := tanh ( (10)

where || denotes the concatenation operation, a € R*™ and b € R are learnable parameters, and
7 > 0 is a temperature hyperparameter.

Next, we describe our aggregation mechanism. For each node u € V*, let h!, € R™ denote the
embedding of node u after GNN aggregation. For each graph node v; € V, we define

Woo W0, ,v; v, Wy Oy,
r vivi_p irUj Vi:Tk_p (11)

B = N ho, + -
N DUV eV o D DUV me¥ i

and for each feature node x; € Vy, we define

h/ — woawk7wk hxk+ Z anm Tr (12)

" \/7\/71» (vi,xk)EEX \/7\/:

Furthermore, we add a multi-layer perceptron (MLP) with residual connections after each GNN
aggregation. We use the GELU activation function (Hendrycks & Gimpel, [2016).

4 EXPERIMENTS

We conduct extensive experiments on both heterophilic and homophilic datasets to answer the fol-
lowing research questions:

RQ1: How does our proposed GRAPHITE compare with state-of-the-art methods?

RQ2: How much improvement can our GRAPHITE achieve in terms of the graph homophily?
RQ3: Can our graph transformation alone enhance the accuracy of homophilic GNNs?
RQ4: How should we design the features of feature nodes in our GRAPHITE?

RQS5: How efficient is our GRAPHITE?

RQ6: How effective is our GRAPHITE under various hyperparameters?
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Table 2: Comparison with existing methods. GRAPHITE significantly outperforms state-of-the-art
methods on heterophilic graphs while achieving comparable accuracy with state-of-the-art methods
on homophilic graphs. Best results are marked in bold, and second best results are underlined.

Heterophilic Graphs Homophilic Graphs

Method ACTOR SQUIRREL-F  CHAMELEON-F MINESWEEPER CORA CITESEER

MLP \ 35.04+153 3391+1.55 38.44£5.14 50.99 +1.47 \ 75.45+1.88 71.53+0.70
ChebNet 3440+£1.18 31.75+3.42 34.30+£4.33 91.60 +0.44 81.58£5.09 65.18+8.37
GCN 30.21£0.86 35.57+1.86 40.06 +4.38 72.324+0.93 87.50£1.68 75.77+£0.96
SGC 2926 £141 38.27+2.16 41.40+4.91 72.114+0.95 88.05£2.08 75.80+1.75
GAT 28.86 £0.99 32.744+3.02 40.11 +£2.80 87.59£1.35 87.11£148 76.43+1.31
GraphSAGE 3495+1.06 34.43+2.68 39.33+£4.53 90.54 +0.66 8§790+£1.73 76.43+1.19
GIN 2829+145 39.514+2.83 40.17+4.76 75.89 +£2.09 85.65+£226 7255+1.78
APPNP 33.68£1.26 33.75+2.31 37.93+£4.33 67.36 +1.08 87.59£1.68 7590+0091
GCNII 3478 £1.50 35.93+2.87 41.56+2.74 88.42 +0.85 87.20£1.56 73.84+0091
GATv2 28.87+1.39 3249+2.51 39.72 £ 6.60 88.85+1.16 87.66 £1.52 76.59+1.19
MixHop 3540+134 3043+£2.33 37.93 £3.87 89.68 £0.57 84.53+1.53 76.11+0.83
TAGCN 3492+1.19 33.33+£2.37 41.01+£3.77 91.54 +£0.56 88.38+1.95 76.49+1.41
DAGNN 33.15+1.14 3472+2.55 38.94 £3.53 67.87+1.26 88.27+1.53 75.81+0.90
JKNet 28.63+£0.94 40.81+2.60 40.39 +4.85 81.00£0.92 86.24+0.85 73.11+1.82
Virtual Node 30.71+£0.82 38.00+£2.28 41.45+5.46 72.36 £0.98 87.24+2.00 69.80+6.89
H2GCN 3420+1.47 34.02+3.15 40.89+3.13 87.08 £0.82 76.89+2.25 75.87+1.02
FSGNN 35.60+1.34 37.28+2.63 43.30+3.62 50.00 +0.00 87.81+£196 76.77+1.13
ACM-GNN 34.04+1.25 3391+£2.28 39.78 £4.58 86.35+0.99 88.58 £1.90 76.47+0.99
FAGCN 36.18+1.52 36.52+1.72 39.83£3.93 84.69 £2.05 88.66 £2.11 76.82+1.48
OrderedGNN 35.64+£098 32.70+2.42 38.38 £3.65 91.01 £0.50 84.81+1.67 74.10+1.62
GloGNN 19.80+2.61 28.72+2.63 40.17 £ 4.66 53.42+1.47 73.02+298 72.46+2.09
GGCN 3276 £1.39 35.06+£5.65 34.08 £3.44 84.76 £ 1.84 86.39+1.93 75.36+1.99
GPRGNN 3542+133 3497+2.83 40.50 +4.55 83.94 +£0.98 88.86 +1.42 76.49+1.00
ALT 33.10+1.38 37.28+1.49 39.61 £3.36 89.06 £ 0.64 88.82+2.02 76.88+1.20
NodeFormer 29.26 £2.31 24.29+2.60 34.92 £4.08 77.71 £3.50 87.44+137 7520+1.27
SGFormer 25.89+0.80 34.54+£2.96 42.79 £ 4.06 52.06 +0.50 86.24 £1.58 70.74+1.25
DIFFormer 26.31+1.19 33.17+2.84 39.16 £4.10 69.254+0.93 86.61 £3.04 76.65+1.52

GRAPHITE (Ours) | 37.69+£1.57 43.06+2.89 45.08 £4.04 9478 £0.41 | 88.23+£1.65 76.41+1.57

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate GRAPHITE and various baseline methods across six real-world datasets.
The dataset statistics are summarized in Table[I] The reported homophily is the adjusted homophily
introduced in [Platonov et al.| (2024), which exhibits more desirable properties compared to tradi-
tional edge/node homophily. We leverage adjusted homophily to categorize the datasets into two
groups: heterophilic and homophilic. Please see Appendix [A.|for dataset descriptions.

Training and evaluation. To benchmark GRAPHITE and compare it with the baseline methods,
we use node classification tasks with performance measured by classification accuracy on ACTOR,
CHAMELEON-F, SQUIRREL-F, CORA, and CITESEER and by ROC-AUC on MINESWEEPER fol-
lowing Platonov et al.|(2023)). For all baseline methods, we use the hyperparameters provided by the
authors. For the evaluation on ACTOR, CHAMELEON-F, and SQUIRREL-F, we generate 10 random
splits with a ratio of 48%/32%/20% as the training/validation/test set, respectively, following |Gu
et al. (2024). For the evaluation on MINESWEEPER, we directly utilize the 10 random splits pro-
vided by the original paper (Platonov et al.l 2023)). For the evaluation on CORA and CITESEER, we
follow Luan et al.|(2021)) and |Chien et al.[|(2020) to randomly generate 10 random splits with a ratio
of 60%/20%/20% as the training/validation/test set, respectively. For each experiment, we report
the mean and the standard deviation of the performance metric across the corresponding 10 random
splits. Please see Appendix [A]for additional experimental settings.

4.2 MAIN RESULTS

To answer RQJT] we compare the proposed method GRAPHITE with 27 state-of-the-art methods on
six heterophilic and homophilic graphs. The results are shown in Table
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As shown in Table [2] our GRAPHITE achieves significant performance gains (p-value<0.1) over
prior state-of-the-art GNN methods on heterophilic graphs while maintaining competitive accu-
racy on homophilic graphs. Specifically, GRAPHITE outperforms the best baseline methods by
4.17%,5.23%, 5.35% and 3.47% on ACTOR, SQUIRREL-F, CHEMELEON-F and MINESWEEPER,
respectively. While some existing models perform well on individual datasets, they often strug-
gle on others, highlighting their insufficient consistency. In contrast, GRAPHITE demonstrates the
best results across all four heterophilic benchmarks. Another interesting observation is that while
GRAPHITE is built upon FAGCN (Bo et al., [2021), it significantly surpasses FAGCN, demonstrat-
ing the beneficial effect of our graph transformation and feature edges.

Discussion. It is worth noting that most of the baseline methods cannot achieve better results com-
pared to MLP on ACTOR, which can be explained by the fact that these methods typically treat
node features and graph structure as joint input without explicitly decoupling them. The weak struc-
tural homophily exhibited by ACTOR makes typical GNNs fail to capture important feature signals,
reinforcing the importance of our graph transformation strategy that boosts feature homophily sig-
nificantly. For SQUIRREL-F, we find that JKNet is the best among baselines. This observation
reveals that structure information is very important within SQUIRREL-F since JKNet aggregates
feature knowledge from multi-hop neighbors to learn structure-aware representation. This finding
also explains the success of GRAPHITE since the useful multi-hop information in SQUIRREL-F can
be propagated even more efficiently through the constructed feature edges.

As another example, SGFormer performs the best on CHAMELEON-F among baseline methods.
We argue that CHAMELEON-F needs a considerable amount of global messages and graph trans-
formers are experts at capturing this type of information. Compared with NodeFormer and DIF-
Former, SGFormer is the most advanced graph transformer utilizing simplified graph attention that
strikes a good balance between global structural information and feature signal, preventing the over-
globalizing issue (Xing et al., |2024). Similarly, GRAPHITE transforms the original graph into a
form that facilitates global message exchange by the introduction of feature edges. As a final re-
mark, although GRAPHITE is designed specifically to deal with heterophilic datasets, GRAPHITE
still maintains competitive accuracy on homophilic datasets (CORA and CITESEER), achieving re-
sults that are on par with the best existing methods.

4.3 HOMOPHILY ANALYSIS

Table 3: Relative improvement ratio of feature ho-
mophily and adjusted homophily across datasets.

ﬁé;ﬁiclgofse?ﬁtcesroﬁhithc d;tasetshl}lndgfgm?e ?55 GRAPHITE significantly boosts both homophily
: feature homophily : : Al At
and adjusted homophily H"<(G) (see Ap- metrics. See Figure 2] for visualization.

pendix [B] for their formal definitions). Table 3]

To answer RQZ2] we conduct a homophily anal-

and Figure [2] show the relative improvements Dataset HE(G)  HMAM(G)
between the homophily metrics before and af- ACTOR +179% +2767%
ter applying GRAPHITE. We can observe a sig- SQUIRREL-F +961% +215%
nificant boost in both homophilily metrics af- CHAMELEON-F +1739% +402%
ter applying GRAPHITE across the four het- MINESWEEPER +41% +1023%

erophilic datasets.

Discussion. Overall, GRAPHITE effectively boosts both homophily metrics across all heterophilic
datasets. Specifically, Squirrel-F and Chameleon-F demonstrate significant boosts in terms of fea-
ture homophily. This is mainly because their discrete features directly correspond to specific top-
ics and each feature edge will contribute much higher feature similarity than usual edges. On
the other hand, Actor and Minesweeper showcase much higher adjusted homophily after apply-
ing GRAPHITE. For Actor, this favorable behavior can be attributed to the high correlation between
page co-occurrences and node labels; while for Minesweeper, the sum of label-specific node degrees
(defined in Equation (14)) increases much due to the transformation performed by GRAPHITE.

Baseline methods. In our experiments, we consider a wide range of GNN baselines, including MLP
(structure-agnostic), homophilic GNNs, heterophilic GNNs, and Graph Transformers. The full list
is shown in Appendix
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Table 4: Effectiveness of the proposed graph transformation. GRAPHITE transformed graphs alone

can already enhance the performance of homophilic GNNSs.

Dataset ACTOR MINESWEEPER
+GRAPHITE? X v X v
GCN 30.21+0.86 34.83+1.28 | 72.324+0.93 75.38+1.56
GAT 28.86 £0.99 32.09+1.35 | 87.59+1.35 88.66 +0.88
GraphSAGE | 34.95+1.06 35.09+1.06 | 90.54+0.66 90.85+0.67
JKNet 28.63+094 3596+ 1.40 | 81.00+0.92 85.56+2.59
GIN 2829+145 33.75+1.83 | 75.89+2.09 87.07+1.71

Table 5: Comparison of aggregators for the features of feature nodes. All aggregators in fact perform
similarly, so we choose averaging due to its simplicity and efficiency.

Dataset | Averaging (Ours) Learned Embeddings Learned Attention ~Majority Voting
ACTOR 37.69 37.46 37.13 37.59
SQUIRREL-F 43.06 4353 43.46 43.28
CHAMELEON-F 45.08 44.80 44.36 45.64
MINESWEEPER 94.78 94.47 94.56 94.75

4.4 ABLATION STUDIES

Graph transformation. To further demonstrate the effectiveness of our proposed graph transforma-
tion GRAPHITE and answer RQJ3] we compare the performance of homophilic GNNs on the orig-
inal graph and that on the transformed graph. In this experiment, we use two larger-scale datasets,
ACTOR and MINESWEEPER, and five representative homophilic GNNs, GCN, GAT, GraphSAGE,
JKNet, and GIN. The results are presented in Table []

From Table 4] we can see that our proposed GRAPHITE consistently improves the performance of
the five representative homophilic GNNs on both datasets, even though these GNNs are not specially
designed for modeling feature nodes. For example, the accuracy of GAT on ACTOR is enhanced
from 30.21% to 34.83%, which is a relative improvement of 15.29%. The results demonstrate
that our proposed graph transformation GRAPHITE can significantly enhance the performance of
homophilic GNNs on originally heterophilic graphs, echoing the fact that our proposed graph trans-
formation can significantly increase the graph homophily.

Features of feature nodes. GRAPHITE uses averaging aggregation to define the features of fea-
ture nodes. To elaborate on the rationale of this simple aggregator and answer RQ@] we compare
with other aggregators on heterophilic datasets. The results are shown in Table[5] In fact, all ag-
gregators have similar accuracies while averaging is more efficient than learned embeddings and
attention-weighted aggregation and is simpler than majority voting. Therefore, we use averaging in
our method due to its simplicity and efficiency.

Computational efficiency. To evaluate the efficiency of our method and answer RQJ] we provide
a comparison of running times with and without our transformation, respectively. The results are
shown in Table [6] (sorted by graph sizes). We can see that our graph transformation has only a
small impact on running time while significantly improving accuracy. Notably, the computational
overhead gets smaller on larger graphs (e.g., Minesweeper), justifying the scalability of our method.
This is because the number of added nodes (i.e., the number of features) is typically negligibly small
compared with the number of nodes on large graphs, and the number of feature edges is proportional
to the space complexity of the node feature matrix X.

Hyperparameters. Since our method has a few hyperparameters including 7 and wy, to answer
RQ6 we provide a sensitivity analysis of them on MINESWEEPER. The results are shown in Table[7]
From the table, we can see that our method is not sensitive to these hyperparameters, and our method
consistently outperform the best baseline under various hyperparameter values.

5 RELATED WORK

A substantial body of research has explored the challenges of heterophily in graph neural networks
(GNNs). Many early approaches sought to improve information aggregation, such as MixHop (Abu-
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Table 6: Running time comparison with and without GRAPHITE. Graphs are sorted in decreasing
order by graph sizes. Our graph transformation has only a small impact on running time while
significantly improves accuracy.

Method MINESWEEPER ACTOR SQUIRREL-F CHAMELEON-F
No transformation 1.9 min 1.5 min 0.7 min 0.5 min
With transformation 2.3 min 2.0 min 1.1 min 0.7 min

Table 7: Sensitivity analysis of hyperparameters 7 and wy on MINESWEEPER. Our method consis-
tently outperform the best baseline under various hyperparameters.

Best GRAPHITE (Ours)

Baseline 7=0.1 7=0.5 7=1.0 T=15 T=2.0
91.60 \ 93.48 94.29 94.78 94.66 94.18

Best GRAPHITE (Ours)

Baseline | wy = 0.1 wxy =025 wxy =05 wxy =075 wy=1.0
91.60 \ 94.78 94.16 93.95 93.53 93.15

El-Haija et al.l 2019), which mixes different-hop neighborhood features, and GPRGNN (Chien
et al.,[2020), which employs generalized PageRank propagation for adaptive message passing. Other
methods focus on explicit heterophilic adaptations, such as H2GCN (Zhu et al., [2020), which sep-
arates ego- and neighbor-embeddings, and FAGCN (Bo et al., 2021), which learns optimal repre-
sentations via frequency-adaptive filtering. Additional works, including OrderedGNN (Song et al.,
2023)), GloGNN (Li et al.l 2022), and GGCN (Yan et al., 2022), leverage structural ordering, global
context, and edge corrections, respectively, to enhance performance on heterophilic graphs. Recent
advances explore alternative formulations, such as component-wise signal decomposition (e.g. ALT,
Xu et al.l [2023)) and adaptive residual mechanisms (Xu et al., [2024a; |Yan et al., 2024) for greater
flexibility. Beyond architectural innovations, rigorous benchmarking efforts (Lim et al.| [2021; |[Zhu
et al.,|2024; [Platonov et al.| 2023)) have been introduced to standardize evaluations and assess gener-
alization across diverse graph properties. A broader synthesis of heterophilic GNN techniques can
be found in recent surveys (Zheng et al.,|2022;Zhu et al., 2023} Luan et al.,|2024; Gong et al., 2024,)).
Please refer to Appendix [C|for additional related work.

6 CONCLUSION & FUTURE WORK

In this paper, we propose GRAPHITE, a simple yet efficient framework to address the heterophily
issue in node classification. By introducing feature nodes that connect to graph nodes with corre-
sponding discrete features, we can solve the heterophily issue by increasing the graph homophily
ratio. Through theoretical analysis and empirical study, we validate that GRAPHITE can indeed
effectively increase the graph homophily. Our extensive experiments demonstrate that GRAPHITE
consistently outperforms state-of-the-art methods on heterophilic graph datasets and achieves com-
parable performance on homophilic graph datasets. An interesting future direction would be extend-
ing the proposed graph transformation to general graphs with continuous node features; possible
approaches include clustering the continuous features into a few clusters and binning the continuous
features into discrete buckets. Other future directions include (i) studying how our graph transfor-
mation affects graph properties, (ii) connecting to the node distinguishability principle (Luan et al.,
2023)), and (iii) identifying an optimal subset of features (Zheng et al., 2025)).
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A EXPERIMENTAL SETTINGS (CONT’D)

A.1 DATASETS (CONT’D)

For heterophilic group, we consider the following datasets, which are widely used as benchmarks
for studying graph learning methods under heterophilic settings.

* ACTOR (Pei et al., 2020): ACTOR dataset is an actor-only induced subgraph of the film
dataset introduced by (Tang et al.l [2009). The nodes are actors and the edges denote co-
occurrence on the same Wikipedia page. The node features are keywords on the pages and
we classify nodes into five categories.

* Squirrel-Filtered (SQUIRREL-F, |Platonov et al. 2023): SQUIRREL-F is a page-page
dataset. It is a subset of the Wiki dataset (Rozemberczki et al., [2021) that focus on the
topic related to squirrel. Nodes are web pages and edges are mutual links between pages.
The node features are important keywords in the pages and we classify nodes into five
categories in terms of traffic of the webpage.

* Chameleon-Filtered (CHAMELEON-F, [Platonov et al., 2023): CHAMELEON-F is a page-
page dataset. It is a subset of the Wiki dataset (Rozemberczki et al., 2021) that focus on
the topic related to chameleon. Nodes are web pages and edges are mutual links between
pages. The node features are important keywords in the pages and we classify nodes into
five categories in terms of traffic of the webpage.

* MINESWEEPER (Platonov et al., 2023): MINESWEEPER is a synthetic dataset that simu-
lates a Minesweeper game with 100x 100 grid. Each node is connected to its neighboring
nodes where 20% nodes are selected as mines at random. Node features are numbers of
neighboring mines and the goal is to predict whether each test node is mine. These datasets
are widely used as benchmarks for studying graph learning methods under heterophilic
settings.

For the homophilic group, we consider the following datasets, which are standard homophilic net-
work benchmarks.

* CORA (Sen et al} [2008) : Cora dataset is a citation network, where nodes represent sci-
entific papers in the machine learning field, and edges correspond to citation relationships
between these papers. Each node is associated with a set of features that describe the paper,
represented as a bag-of-words model. The task for this dataset is to classify each paper into
one of seven categories, reflecting the area of research the paper belongs to.

* CITESEER (Sen et al.l2008)): CiteSeer dataset is a citation network of scientific papers. It
consists of research papers as nodes, with citation links forming the edges between them.
Each node is associated with a set of features derived from the paper’s content, which is a
bag-of-words representation of the paper’s text. The task for this dataset is to classify each
paper into one of six categories, each representing a specific field of study.

A.2 BASELINE METHODS (CONT’D)

We briefly introduce GNN-based baseline methods as follows.

The first category is homophilic GNNs, which are originally designed under the homophily assump-
tion.

* ChebNet (Defferrard et al., 2016): Uses Chebyshev polynomials to approximate graph
convolutions.

* GCN (Kipf & Welling| [2016): Employs a first-order Chebyshev approximation for spectral
graph convolutions.

* SGC (Wu et al.,2019): Simplifies GCN by removing non-linearities and collapsing weight
matrices for efficiency.

* GAT (Velickovic et al., 2018)): Introduces attention mechanisms to assign adaptive impor-
tance to edges.
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* GraphSAGE (Hamilton et al.,2017): Uses several aggregators for inductive graph learning.

* GIN (Xu et al., 2018a): Employs sum-based aggregation to maximize graph structure ex-
pressiveness.

* APPNP (Gasteiger et al.l [2019): Combines personalized PageRank with neural propaga-
tion.

* GCNII (Chen et al.,[2020): Extends GCN with residual connections and identity mapping
for deep GNN training.

* GATV2 (Brody et al.,2021): Enhances GAT with dynamic attention coefficients for flexible
neighbor weighting.

* MixHop (Abu-El-Haija et al.,2019): Aggregates multi-hop neighborhood features by mix-
ing different powers of adjacency matrices.

* TAGCN (Du et al., |2017): Introduces trainable polynomial filters for adaptive, multi-scale
feature extraction.

* DAGNN (Liu et al.; 2020): Uses dual attention to decouple message aggregation and trans-
formation, improving depth scalability.

» JKNet (Xu et al., 2018b): Uses a jumping knowledge mechanism to combine features from
different layers adaptively. We default the backbone GNN model to GCN.

* Virtual Node (Gilmer et al.,[2017): Introduces an auxiliary global node to facilitate message
passing. We default the backbone GNN model to GCN.

The second category is heterophilic GNNs, which are designed for graphs where connected nodes
often have different labels.

* H2GCN (Zhu et al| [2020): Enhances GNNs by ego-/neighbor-embedding seperation,
higher-order neighbors and intermediate representation combinations.

* FSGNN (Maurya et al.,[2021): Employs soft feature selection and hop normalization over
GNN layers to form a simple, shallow GNN. We use their default 3-hop variant.

* ACM-GNN (Luan et al., [2022)): Introduces adaptive channel mixing to diversify local in-
formation. We use their default ACM-GCN+ variant.

* FAGCN (Bo et al.| [2021): Uses frequency adaptive filtering to learn optimal graph repre-
sentations.

* OrderedGNN (Song et al.l 2023): Aligns the order to encode neighborhood information
and avoids feature mixing.

* GloGNN (L1 et al., 2022): Incorporates global structural information to enhance graph
learning beyond local neighborhoods.

* GGCN (Yan et al.,[2022)): Utilizes structure/feature-based edge correction to combat over-
smoothing and heterophily.

* GPRGNN (Chien et al., 2020): Introduces generalized PageRank propagation to capture
the graph structure.

* ALT (Xu et al) 2023)): Decomposes graph into components, extracts signals from these
components, and adaptively integrate these signals.

The last category is graph transformers, which adapt transformer architectures to graph data and
look beyond local neighborhood aggregation.

* NodeFormer (Wu et al., 2022): Introduces all-pair message passing on layer-specific adap-
tive latent graphs, enabling global feature propagation with linear complexity.

* SGFormer (Wu et al.}[2024a): Develops a graph encoder backbone that efficiently computes
all-pair interactions with one-layer attentive propagation.

* DIFFormer (Wu et al.| 2023)): Proposes an energy-constrained diffusion model, leading to
variants that are efficient and capable of capturing complex structures.
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A.3 TRAINING & EVALUATION (CONT’D)

For our method, we use wxy € {0.01,0.1,0.6,8}, wo € {0.1,0.2,0.3,0.5,1,8}, 7 € {0.01,0.1,1},
and dropout rate 0.2. We use the GNN architecture described in the method section with 8 GNN lay-
ers with hidden dimensionality 512 and add a two-layer MLP after each GNN layer for heterophilic
graphs and use FAGCN for homophilic graphs. We use original node features as described in Sec-
tion[3.2] except that we use zeros as the features of graph nodes on Squirrel-F and that we normalize
the features of graph nodes on Cora and CiteSeer after computing the features of feature nodes. We
train the GNN with learning rate 0.00003 for 1000 steps using the Adam optimizer (Kingma & Ba,
2014). Our method was implemented in PyTorch 2.7.0 and Deep Graph Library (DGL) 2.4.0, and
experiments were run on Intel Xeon CPU @ 2.20GHz with 96GB memory and NVIDIA Tesla V100
32GB GPU.

B DEFINITION OF HOMOPHILY METRICS

To measure to what extent GRAPHITE can boost graph homophily on heterophlic datasets, we
consider two popular homophily metrics: feature homophily (Jin et al.l 2022) and adjusted ho-
mophily (Platonov et al., 2024). Formally, given a graph G, feature homophily H™™™ is defined as
follows: .

Hee(G) = — Y sim(v;,v;), (13)

L
(vi,vj)€EE
where sim(v;, v;) := cos(X[v;,:], X[v;,:]) is the cosine-similarity computed between features of
nodes v;, v;. This metric is a variant of the generalized edge homophily ratio H**® proposed by (Jin
et al.,|2022), which measures the feature similarity between each of the connected node pairs in the
graph dataset. Then, the adjusted homophily H*®d is defined as follows:
c
_H(G) - 3, D2/(2IE)’
1 - e, D2/(2I€])?

where C' denotes the number of classes and H®%¢(G) is edge homophily, which is defined similarly
as Equation (13) with the similarity function sim(v;, v;) = 1g,, —,. },and

Hadjusled (g) . , (14)

=Y,

De:= " deg(v)l}y,—g (15)
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is the sum of degrees deg(v) of nodes with label ¢, where y,, denotes the label of node v. Since we
do not have node labels for the feature nodes when computing adjusted homophily, we assign them
a “soft label,” which is a uniform probability distribution over the labels of its 1-hop neighbors.

C ADDITIONAL RELATED WORK

In modern machine learning research (Ma et al., 2022; [Yu et al., |2026; [2025} |[Zhang et al., 2026;
Bao et al., 2025 |Chen et al.| [2024; We1 et al., [2026atb; [2025atb; 2024; 2022; |Cui et al., [2026;
Chen et al., [2026; [Liu et al., 2025a3b}; 2024azbic; 2023 |Bartan et al., 2025 |[Zeng et al., [2026albic;
2025aib; [2024aib; 2023azb; [Zou et al.,|2025ab; Lin et al., 20262025} [2024} Zhou et al., 2025; Jing
et al., 20255 |Q1u et al.| 2026} 2025agbic; 120245 (2023120225 [ Xu et al., [2024b; |L1 et al., 2025ajbicid;
2023b; Yoo et al., [2025alb; 2024} |Chan et al., [2024; Wu et al., 2024b}; He et al., 2026} [2024; Wang
et al., | 2023), a problem related to heterophily is over-squashing. The over-squashing problem in
message passing neural networks arises when long-range information is exponentially compressed,
preventing effective dissemination across the graph (Alon & Yahav, [2020; |Shi et al.| |2023b). A pri-
mary research direction addresses this issue by identifying topological bottlenecks and modifying
graph connectivity. Topping et al.| (2021) established an initial framework linking oversquashing to
graph Ricci curvature, demonstrating that negatively curved edges act as bottlenecks. Building on
this idea, subsequent works have developed rewiring strategies inspired by curvature-based princi-
ples (Nguyen et al.| [2023 |Shi et al., 2023a). Beyond curvature, Black et al.| (2023) introduced a
perspective using effective resistance. Another line of research leverages spectral methods to coun-
teract over-squashing, with notable approaches including spectral gaps (Arnaiz-Rodriguez et al.,
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2022), expander graph constructions (Deac et al.| 2022)), and first-order spectral rewiring (Karhad-
kar et al., 2022). More recently, D1 Giovanni et al.| (2023) provided a comprehensive analysis of
the factors contributing to oversquashing. Additional solutions explore advanced rewiring strategies
and novel message-passing paradigms (Barbero et al.l|2023;|Qian et al.| 2023} Behrouz & Hashemi,
2024)).

D THEORETICAL ANALYSIS

D.1 ASSUMPTIONS

In this subsection, we introduce the assumptions of our theoretical analysis, which are mild and
realistic.

Given a graph G = (V, €, X) with £ # @ and X € {0,1}V*, we define the feature similarity

metric as sim(v;, v;) = || X[vs,:] A X[v;,:]|lc and use the feature homophily as the homophily
metric:
1 .
hom(G) := el Z sim(v;, v;). (16)
(viv;)€EE

Furthermore, we assume that the original graph G is heterophilic. That is, we have hom(G) < 1
while there exists a pair of nodes, v;, v; € V (v; # v;), such that sim(v;, v;) > 0 but (v;,v;) ¢ £.

Besides that, we assume that the given graph G does not have too dense features. Formally, we
assume that |X'| < O(|V|) and that || X||o < O(|€|). For the transformed graph G*, we assume that
every feature is used: for any feature & € X', there exists a graph node v; € V such that X [v;, k] = 1.

D.2 TECHNICAL LEMMA

Here, we prove a technical lemma that we will use later.

Lemma 4. Let A, B C R be two nonempty, finite multisets such that
1 1
SRR
Al 1Bl
Then,

1 1
7|AI_IB| Z z>m2z.

z€EAUB z€A

Proof. To simplify notation, let

1

pa = — 52, (17)
P>
1

pp = >, (18)
|B| z€B

A:=pug—puq > 0. (19)
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Then,
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Al pa+ ) z) — pa (23)
|A\ 18] ( 2
1
= mﬂfu pa+ Bl s — (Al +[B]) - pra) (25)
1
= mﬂlﬂ s — |B| - pa) (26)
B
= |A|_~_||B|(NB — pa) 27
_ 8|
= AILE |B|A > 0. (28)

It follows that

1
AU B| Z Zz =

z€ AUB ZE.A

D.3 PROOF OF THEOREM[II

Homophily. Since the original graph G is homophilic, then there exists a pair of nodes, v;,v; € V
(v; # v;), such that sim(v;, v;) = || X [vi,:] A X[vj,:]|lec > 0but (v;,v;) ¢ E. According to the
definition of T, we know that (v;,v;) € ET\ € # @, 50 ET\ € # @.

Furthermore, for any (v;,v;) € E7\ &, since sim(v;, v;) = || X [vi,:] A X[v},][loc > O, then there

exists a feature k € X such that X [v;, k] A X [v;, k] > 0. Since the feature matrix X is binary, then
we must have

X, k=1,  Xlv;, k] =1. (29)
It follows that
sim(vs, v;) = [[ X [vi, ] A X[y, ][l (30)
—glax|X[v,,k]/\X[vj,k’]| (31)
> | X v, K] A X [v;, K| (32)
=11 =1. (33)
Since hom(G) < 1, then
sim(v;,v;) > 1 > hom(G). (34)
Therefore, by Lemma ] with
A = {sim(v;,v;) : (v;,v5) € £}, (35)
B = {sim(v;,v;) : (vi,v;) € ET\ EY, (36)
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we have
1 .
hom(GT) = ] Z sim(v;, v;) 37
(’Uivvj)egJr
1 .
= EUED Z sim(v;, v;) (38)
(vi,0;)EELIET\E)
1
= > oz (39)
|A - B‘ z€EAUB
1
>z (40)
|A| zEA
1 .
= Gl Z sim(v;, v;) 41)
(’Uq',,Uj)Eg
= hom(G). 42)

Number of edges. Since there are || nodes in total, then the total number of node pairs is (“2}‘).
Recall that £T \ € is the set of added edges. It follows that

- tel=tenvel < (1)) @)
VIi(|[V| -1

D.4 PROOF OF OBSERVATION 2]

Since sim(v;,v;) = || X[vi,:] A X[vj,:]|loc > 0, then there exists a feature k € X such that
X [vs, k] A X[vj;, k] > 0. Since the feature matrix X is binary, then we must have
Xlv;, k] =1, Xvj, k] =1. (45)

This implies that (v;,x;) € £* and that (v;,z5) € £*. Hence, there exists a length-2 path v; —
2y — v; connecting graph nodes v; and v;. Therefore, v; and v; are two-hop neighbors of each
other.

D.5 PROOF OF THEOREM[3]

Homophily. Since the original graph G is homophilic, then there exists a pair of nodes, v;,v; € V
(v; # v;), such that sim(v;, v;) = || X [vs, ] A X [v},]||cc > 0but (v;,v;) ¢ E. Since sim(v;, v;) =
I X [vi,:] A X[vj,:]||cc > 0, then there exists a feature k € X such that X [v;, k] A X[v;, k] > 0.
Since the feature matrix X is binary, then we must have

Xv;, k] =1, Xv;, k] =1. (46)
This implies that (v;, zx) € £* \ € and that (v;, ;) € £* \ €. Thus, £* \ £ is nonempty.

Furthermore, for any feature node z, € Vy, since any feature edge (v;,xr) € Ex ensures
X v, k] = 1, then we have

X*[gjk,k}:wxﬂ(le{mk})‘ S X[vik] (47)

vi:(vi,wR)EEX

1
=@y 2 ! (49)

v (v, ) EE

1
T Ex (v x (@])] 2 ! )

vii(vg,xR)EEN(V x{xK})
=1 (50)
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Finally, for any added feature edge (v;, x) € £*\ € = Ex,
sim(v;, xg) = || X [vi, 1] A X[z, ]|l oo
= max | X [v;, k'] A X[z, K']|
k'ex

> | X [vi, k] A X[z, k]|
=11 =1
Since hom(G) < 1, then
sim(v;, ) > 1 > hom(G).
Therefore, by Lemma [ with
A = {sim(v;, v;) : (vi,v5) € ER,
B := {sim(vi, zx) : (vi, xk) € Ex},
we have
hom(G*) = ! Z sim(u, u')

|€ | (u,u")e&*

1 .
BT e

(u,u")eELUEX

1 .
:E Z sim(v;, vj)

(vi,v;)€EE
= hom(G).

Number of nodes. Since |X'| < O(|V|), then
Vx| = X[ < OV).
It follows that
V] =VI+ Vx|
< VI+o(v))
= O(V)).

Number of edges. Since X is a binary matrix, then || X ||; = || X0 < O(|€|). Hence,

Exl =" D Lwaneen

v;EV TR EVY

=3 > waeea]

v;€EVkEX

Do xpk=]

v, EV kEX

= Z ZX[’UZ‘,/C]

v, EV kEX

=Y > IX[vi, k]|

v;EV kEX
= X1l = 1 XIlo < O(€)).

It follows that
£ = [€] + [Ex]
< €]+ O(l€])
=0(/€]).
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E USE OF LARGE LANGUAGE MODELS

We made limited and controlled use of large language models (LLMs) solely for stylistic refinement
and improving readability of the text. All scientific content, methodology, experiments, and conclu-
sions were fully conceived and validated by the authors. The role of LLMs was purely editorial and
does not constitute co-authorship.
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