
HIGHLIGHTS
Ø Our work: the first theory on the LLM prompting paradigm.

• Existing theories: the one-model-one-task paradigm;
• C.f. LLM prompting: the one-model-many-tasks paradigm.

Ø Expressive power: Prompting is Turing-complete.
• Not only existence: a simple & explicit construction.

Ø Complexity bounds: For any TIME 𝑡 𝑛 function,
• CoT complexity: O 𝑡 𝑛 log 𝑡 𝑛 CoT steps;
• Precision complexity: O log 𝑛 + 𝑡 𝑛 bits.
• Nearly as efficient as the class of all Transformers.
• (Not covered in this poster. See our paper for detail…)

Ask, and it shall be given: On the Turing completeness of prompting
Ruizhong Qiu, Zhe Xu, Wenxuan Bao, Hanghang Tong {rq5,zhexu3,wbao4,htong}@illinois.edu UIUC

TURING COMPLETENESS
Ø Theorem: There exist

• a finite alphabet 𝛴, a finite-size decoder-only Transformer 𝛤: 𝛴! → 𝛴,
• and coding schemes tokenize: 0,1 ∗ → 𝛴∗ and readout: 𝛴∗ → 0,1 ∗

• with which prompting is Turing-complete, in the sense that
• for every computable function 𝜑: dom𝜑 → 0,1 ∗ with dom𝜑 ⊆ 0,1 ∗,
• there exists a prompt 𝝅# ∈ 𝛴! such that for every input 𝒙 ∈ dom𝜑,

• generate$ 𝝅# ⋅ tokenize 𝒙 computes a finite CoT, and

readout generate$ 𝝅# ⋅ tokenize 𝒙 = 𝜑 𝒙 .

Ø Remarks:
• 𝛴, 𝛤, tokenize, and readout are independent of the function 𝜑;
• The prompt 𝝅! is independent of the input 𝒙;
• tokenize & readout run in time O 𝒙 & O 𝜑 𝒙 on a RAM, respectively.

v The rest of this poster is the proof sketch of this theorem…

PRELIMINARIES
Ø Background:

• Decoder-only Transformers: mainstream architecture of LLMs.
• Expressive power: what functions a model class can represent.

Ø Existing theories: classic one-model-one-task paradigm.
• The class of all hard-attention Transformers is Turing-complete;
• Any TIME 𝑡 𝑛 function is computable in O 𝑡 𝑛 CoT steps.

Ø Practice: LLM prompting (i.e., one-model-many-tasks).
• A single general-purpose LLM; different prompts for different tasks.
v Fundamentally, how powerful is this paradigm?

Ø Notations:
• 𝛴: an alphabet (i.e., the set of tokens).

• 𝛴∗: the set of strings (possibly empty) over 𝛴.
• 𝛴#: the set of non-empty strings over 𝛴.
• 𝛴$: the set of countably infinite strings over 𝛴.

• 𝛤: 𝛴! → 𝛴: a decoder-only Transformer.
• 𝛤 predicts the next-token via greedy decoding.

• generate$: 𝛴! → 𝛴! ∪ 𝛴%: autoregressive generation using 𝛤.
• Here, the output of generate% does not include the prompt.

TWO-TAPE POST–TURING MACHINES
Ø Key idea: Define a new imperative model of computation.
Ø Setting: two bi-infinite tapes A & B. Each tape has

• Infinitely many cells over the binary alphabet 0,1 and
• A head pointing to a cell. Input is initially written to tape A.

Ø Proposed model: two-tape Post–Turing machines (2-PTMs).
• A 2-PTM is defined by a finite instruction sequence 𝜾 = ⟨𝜄&, … , 𝜄 𝜾 ()⟩.
• Each instruction 𝜄* (0 ≤ 𝑗 < |𝜾|) is one of the following: (below, 𝜏 ∈ {A, B})

• #: halt;
• 𝜏L: move the head of tape 𝜏 one cell left, and go to 𝜄&#';
• 𝜏R: move the head of tape 𝜏 one cell right, and go to 𝜄&#';
• 𝜏0: write 0 to the pointed cell of tape 𝜏, and go to 𝜄&#';
• 𝜏1: write 1 to the pointed cell of tape 𝜏, and go to 𝜄&#';
• 𝜏!𝑘 (𝑘 ≠ 𝑗): if the pointed cell of tape 𝜏 is 0, go to 𝜄(; else go to 𝜄&#';
• 𝜏?𝑘 (𝑘 ≠ 𝑗): if the pointed cell of tape 𝜏 is 1, go to 𝜄(; else go to 𝜄&#'.

Ø Unary encoding of go-to’s: (below, 𝜎 ∈ {𝜏!, 𝜏?}𝜏 ∈ {A, B}; ⋅ is concatenation)
• If 𝑘 < 𝑗, encode 𝜎(as 𝜎 ⋅ -𝑗–𝑘 ⋅ @ (i.e., repeating token “–” 𝑗 − 𝑘 times).
• If 𝑘 > 𝑗, encode 𝜎(as 𝜎 ⋅ +𝑘–𝑗 ⋅ @ (i.e., repeating token “+” 𝑘 − 𝑗 times).

SIMULATION via CoT STEPS
Ø Key idea: Record the execution of 2-PTMs via CoT steps.
Ø Go-to instruction 𝜄! = 𝜎" (𝜎 ∈ {𝜏!, 𝜏?}𝜏 ∈ {A, B}):

• If the go-to condition is not met, put token / in the CoT.
• Else, put = ⋅ -𝑗–𝑘 ⋅ @ if 𝑘 < 𝑗 or = ⋅ +𝑗–𝑘 ⋅ @ if 𝑘 > 𝑗.

Ø Halting & outputting: When execution reaches instruction #,
• Put the output between two special tokens : and $ in the CoT,
• So that readout can extract it easily.

Ø Input tokenization:
• Key idea: “Write” the input to tape A via CoT steps.
• Trick: Encode the input 𝒙 via Shannon’s encoding.

v Many details omitted here… See the example below.
Ø The constructed alphabet:

𝛴 = {#, AL, BL, AR, BR, A0, B0, A1, B1, A!, B!, A?, B?, -, +, @, ^, $, /, =, :, 0, 1}.
v The construction of the Transformer is also omitted. See our paper…

DEMONSTRATION
Ø Example: Suppose 𝜑 decides the DYCK language.

• DYCK: balanced parenthesis sequences; “0” as “(”, “1” as “)”.
Ø Prompt 𝝅@ for deciding DYCK:

^A?++++++++++++++@A0ALA0ALA?----@ARARA1ARBLB?++@A1#ARA?++++@
B1BRB!+++@BLB!++++@B0ARB!-----------------------@ALARARA?--@
A0ALA0ALA?----@ARARA1#$

Ø The input 00 has Shannon’s encoding 1010, tokenized as:
tokenize(00) = ARARARARALALA1ALALA1=----------@

Ø The generated CoT steps for computing 𝜑(00):
=++++++++++++++@AR/B1BR=+++@B0AR=-----------------------@
=++++++++++++++@AR/B1BR=+++@B0AR=-----------------------@
/A0ALA0AL=----@A0ALA0AL=----@A0ALA0AL/ARARA1ARBL=++@:0$

• The final readout answer is :0$.
• It correctly computes 𝜑(00) = 0 (00 ∉ DYCK).

v More examples on GitHub! SCAN TO
LEARN MORE

