Ask, and it shall be given: On the Turing completeness of prompting

Ruizhong Qiu, Zhe Xu, Wenxuan Bao, Hanghang Tong

HIGHLIGHTS

» Our work: the first theory on the LLM prompting paradigm.

* EXxisting theories: the one-model-one-task paradigm,

 C.f. LLM prompting: the one-model-many-tasks paradigm.

»> EXxpressive power: Prompting is Turing-complete.

* Not only existence: a simple & explicit construction.
» Complexity bounds: For any TIME(t(n)) function,

 CoT complexity: O(t(n)logt(n)) CoT steps;
» Precision complexity: O(log(n + t(n))) bits.
» Nearly as efficient as the class of all Transformers.
* (Not covered In this poster. See our paper for detall...)

PRELIMINARIES

» Background:

 Decoder-only Transformers: mainstream architecture of LLMSs.

 Expressive power. what functions a model class can represent.

»> EXxisting theories: classic one-model-one-task paradigm.
* The class of all hard-attention Transformers is Turing-complete;

» Any TIME(t(n)) function is computable in O(¢(n)) CoT steps.
» Practice: LLM prompting (i.e., one-model-many-tasks).

* Asingle general-purpose LLM,; different prompts for different tasks.

“* Fundamentally, how powertful is this paradigm?

» Notations:

« X' an alphabet (i.e., the set of tokens).

2" the set of strings (possibly empty) over .
X*: the set of non-empty strings over 2.

2 ®: the set of countably infinite strings over 2.

« [:27 - X:adecoder-only Transformer.
I’ predicts the next-token via greedy decoding.

e generate: X" — X7 U XY®: autoregressive generation using I".
Here, the output of generate, does not include the prompt.

TURING COMPLETENESS

» Theorem: There exist

 a finite alphabet X, a finite-size decoder-only Transformer I': X - X,
» and coding schemes tokenize: {0,1}* —» X~* and 2" - {0,1}

* with which prompting is Turing-complete, in the sense that
» for every computable function ¢:dom ¢ — {0,1}* with dom ¢ < {0,1}",
» there exists a prompt r, € X" such that for every input x € dom ¢,

* generater (n(p - tokenize(x)) computes a finite CoT, and

(generater (n¢ -tokenize(x))) = @(x).

» Remarks:

2. I, tokenize, and are independent of the function ¢;

The prompt 7z, is independent of the input x;

tokenize & readout run in time O(|x|) & O(|@(x)|) on a RAM, respectively.
** The rest of this poster is the proof sketch of this theorem...

TWO-TAPE POST-TURING MACHINES

> Key idea: Define a new imperative model of computation.

»> Setting: two bi-infinite tapes A & B. Each tape has

 |nfinitely many cells over the binary alphabet {0,1} and
* A head pointing to a cell.

Input is initially written to tape A.

» Proposed model: two-tape Post—Turing machines (2-PTMs).
* AZ2-PTM is defined by a finite instruction sequence t = (i, ..., {j;|-1)-

* Each instruction ¢; (0 < j < |¢]) is one of the following: (below, T € {A, B})
#: halt;
tL: move the head of tape 7 one cell left, and go to ¢;,;
TR: move the head of tape 7 one cell right, and go to ¢;4;
70: write @ to the pointed cell of tape 7, and go to ¢, ¢;
t1: write 1 to the pointed cell of tape 7, and go to ¢;4;
t!, (k # j): if the pointed cell of tape 7 is @, go to (;; else go to ¢;,4;

T2, (k # j): if the pointed cell of tape 7 is 1, go to ¢ ; else go to ¢ .

» Unary encoding of go-to’s: (below, o € {t!, 72}, c 4 & - is concatenation)
If Kk < j, encode g, as o - -/~ - @ (i.e., repeating token “~-” j — k times).
If Kk > j, encode o0y, as ¢ - +*7 - @ (i.e., repeating token “+” k — j times).

{rg5, zhexu3,wbao4,htong}@illinois.edu

UIUC T ILLINOIS
SIMULATION via CoT STEPS

» Key idea: Record the execution of 2-PTMs via CoT steps.

» Go-to instruction (; = gy, (0 € {t!, T?}, c (4 )
 |f the go-to condition is not met, put token / in the CoT.
 Else,put=:--I*.-@ifk<jor=-+*-@ifk >]j.

» Halting & outputting: When execution reaches instruction #,

* Putthe between two special tokens : and $ in the CoT,
* So that can extract it easily.

» Input tokenization:
« Key idea: “Write” the input to tape A via CoT steps.

* Trick: Encode the input x via Shannon’s encoding.
“* Many details omitted here... See the example below.

» The constructed alphabet:
Y ={#, AL, BL, AR, BR, A9, B9, A1,B1,A!,B! A?,B?, -, +,@, ", %,/,= :,0,1}.
“» The construction of the Transformer is also omitted. See our paper...

DEMONSTRATION

» Example: Suppose ¢ decides the DYCK language.
 DYCK: balanced parenthesis sequences; “0" as “(7, “1"as “)".

» Prompt 7, for deciding DYCK:

AA? ++++++++++++++HDABGALAGALA? - - - -@ARARALARBLB ?++@A1#ARA? ++++@
B1BRB!+++@BLB!++++@BOARB ! @ALARARA? - -@
AGALAGALA? - - - -@ARARA1L#$

» The input 60 has Shannon’s encoding 1010, tokenized as:
tokenize(90) = ARARARARALALATALALAL=

» The generated CoT steps for computing ¢ (90):

=++++++++++++++@AR/B1BR=+++@BOAR=
=++++++++++++++@AR/B1BR=+++@BOAR=

/AGALAGAL=- - - -@AGALAOAL=- - - -@AOALAOGAL /ARARA1ARBL=++@:0%
The final answer is :0%.
It correctly computes ¢ (00) = 6 (00 & DYCK).

SCANTO

* More examples on GitHub!




