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ABSTRACT

Ensuring equitable impact of machine learning models across differ-
ent societal groups is of utmost importance for real-world machine
learning applications. Prior research in fairness has predominantly
focused on adjusting model outputs through pre-processing, in-
processing, or post-processing techniques. These techniques focus
on correcting bias in either the data or the model. However, we
argue that the bias in the data and model should be addressed
in conjunction. To achieve this, we propose an algorithm called
GroupDebias to reduce unfairness in the data in a model-guided
fashion, thereby enabling models to exhibit more equitable behav-
ior. Even though it is model-aware, the core idea of GroupDebias
is independent of the model architecture, making it a versatile
and effective approach that can be broadly applied across various
domains and model types. Our method focuses on systematically
addressing biases present in the training data itself by adaptively
dropping samples that increase the biases in the model. Theoreti-
cally, the proposed approach enjoys a guaranteed improvement in
demographic parity at the expense of a bounded reduction in bal-
anced accuracy. A comprehensive evaluation of the GroupDebias
algorithm through extensive experiments on diverse datasets and
machine learning models demonstrates that GroupDebias consis-
tently and significantly outperforms existing fairness enhancement
techniques, achieving a more substantial reduction in unfairness
with minimal impact on model performance.

CCS CONCEPTS

• Computing methodologies→ Supervised learning; Ensemble
methods; Artificial intelligence.
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1 INTRODUCTION

Machine learning is increasingly being used in a variety of appli-
cation areas with the potential for high societal impact such as
filtering job applicants [6] and informing pretrial release decisions
[27], studied in the context of varied domains from finance [19, 34]
and social sciences [1]. With the increasing adoption of machine
learning solutions in society comes the increasing concern for the
fairness of such solutions. Being a broad concept, fairness has been
defined in a wide variety of ways, the most popular views being (1)
individual fairness [5, 14, 16, 29, 32, 36], in which similar individu-
als receive similar outcomes, and (2) group fairness, which aims to
achieve some statistical parity among groups [11].

Ensuring group fairness is particularly important to avoid exac-
erbating historical injustices. Prior works primarily has predomi-
nantly focused on alleviating unfairness in the model [2, 8, 20, 24,
25] or its output [18]. Although there exist efforts to enhance fair-
ness through data pre-processing [10, 22, 39], this aspect remains
relatively under-explored in the broader research landscape. It is
crucial to recognize that biases in the model output can stem from
inherent biases in the data, the design of the model, or a complex
interplay between the two [31]. Thus, to address biases in machine
learning models, it is not sufficient to individually consider just
the data or just the model. A comprehensive approach that tackles
biases in both the data and the model is necessary to achieve mean-
ingful progress in improving fairness in a model. Our contribution
emphasizes the significance of this holistic perspective, aiming to
bridge the gap in current research and provide a more thorough
understanding of the multifaceted challenges associated with bias
in machine learning models. However, none of the prior work in
the field attempts to alleviate unfairness by considering the data
and model in conjunction.
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Figure 1: Model-guided, consensus-based data debiasing.

To address this problem, we introduce a model-guided data pre-
processing approach to alleviating group fairness in the supervised-
binary classification setting, GroupDebias. We motivate our ap-
proach with the concept of expert elicitation, a scientific consensus
methodology used in a wide variety of fields such as social science
[33] and economics [12]. As outlined in Figure 1, for each sensitive
attribute group, we train an auxiliary group expert model. Then,
by utilizing the disagreement among the experts, GroupDebias
identifies which samples to remove. Consider a denied female appli-
cation in a loan approval task. If the expert model trained only on
female loan applicants denies the individual, but the expert model
trained only on male loan applicants approves the individual, this
disagreement suggests this sample may have been a sample that
reflects the underlying historical double standard between the two
groups in the data which may be amplified by downstream models.
This is important as it makes our method versatile: after we lever-
age group expert models to debias the data, it can be used to train
any target classifier.

Through comprehensive evaluations on the fairness benchmark
datasets COMPAS [27], LSA [1], Adult [3], and Bank [34], we demon-
strate that our technique outperforms existing fairness approaches
in terms of reducing bias while preserving or even enhancing model
performance as well as provide a theoretical analysis bounding the
improvement in demographic parity and reduction in balanced ac-
curacy as well as the fairness-utility trade-off. To better measure
the trade-off between utility and fairness, we introduce two new
metrics: fairness-utility relative gain (FURG) and trade-off ratio
(FUTR). Compared with the state-of-the-art, on our benchmarks
for logistic regression as shown in Table 3, GroupDebias obtains,
on average, a 25.5% increase on the next best model on the FURG
metric, and a 321% increase on the FUTR metric. Meanwhile, when
it is not the best-performing model, the trade-off does not lag far
behind the best trade-off. The average percent reduction from the
best model’s FURG and FUTR metric values are 16.5% and 4.6%
respectively.

The main contributions of this paper are summarized as follows:
• Perspective. We propose a novel perspective to bias mitiga-
tion by performing model-guided data debiasing, focusing
on the data in conjunction with the model using a consensus-
based approach.

• Algorithm. We propose an efficient and practical model-
guided algorithm, GroupDebias, to effectively improve fair-
ness with no assumptions about the target model architec-
ture.
• Theory.Weprovide theoretical guarantees for the efficacy of
our algorithm on the improvement in fairness (demographic
parity) and the bounded loss of utility (balanced accuracy).
More specifically, our theory shows that the fairness-utility
trade-off can be linearly controlled by the debias intensity
parameter in our algorithm. Our theory is also corroborated
by our empirical results.
• Experiment.We perform comprehensive experiments on
commonly used fairness datasets utilizing a variety of target
machine learning models and show that our approach has
significantly better fairness-utility gain and trade-off com-
pared to existing methods, consistently ranking in the top
half among the tasks and machine learning model combina-
tions we performed our benchmarks upon (Table 4).

For the rest of the paper, we start with a review of prior work:
limitations and motivations (Section 2), then introduce the problem
we aim to solve (Section 3). Next, we introduce our algorithm and
our theoretical analysis (Section 4). We benchmark performance
and computational efficiency (Section 5.2). Finally, we conclude
with a summary of our findings (Section 6).

2 RELATEDWORKS

2.1 Fair Machine Learning

Research in fair machine learning can be split into three categories:
pre-processing, in-processing, and post-processing. We discuss a
few here and refer the reader to other works for a more compre-
hensive review [4, 9, 37]. Fair pre-processing approaches transform
the data so that the discrimination is removed prior to modeling
[13]. This can take the form of reweighing, subsampling, or trans-
forming the data representation to remove sensitive and adjacent
attributes [10, 22]. Meanwhile, in-processing techniques modify
the model training phase to ensure fairness [13]. These might be
more restricted in applicability. Typically, works taking this ap-
proach augment the loss function to include some sort of fairness
regularizer [2, 25, 39] or are model-specific [8, 20, 24]. There have
been relatively fewer works that apply post-processing to improve
fairness, which utilizes the model outputs in some way to improve
fairness [13, 26, 30]. Overall, many group fairness methods have
limited versatility and can only be applied to specific scenarios at
a certain stage in the model training pipeline. Furthermore, group
fairness techniques often have limitations as to the types of models
or tasks to which they could be applied [31].

2.2 Group Experts

Prior work have argued that it is important to explicitly consider
the sensitive attribute groups [14]. Although training separate clas-
sifiers by domains can be useful, doing it naively, such as with an
ensemble, would result in poor performance due to limited training
data for each classifier [38]. Meanwhile, some prior work lever-
age models primarily trained on a sensitive attribute group in the
training data [15, 38]. One notable post-processing approach [18]
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utilizes a holdout set to create a new predictor that takes the sen-
sitive attribute and the initial model’s predictions as input. Our
work shares a similar spirit in that we utilize auxiliary group expert
models trained on subsets of the training data to inform our data
debiasing. However, to our best knowledge, none of the prior works
has proposed an approach that focused on these auxiliary models
nor used it in combination with pre-processing the data.

3 PROBLEM DEFINITION

The main symbols used throughout this paper are summarized in
Table 1. Throughout this paper, we use bold upper-case letters to
represent matrices (e.g. X), italic upper-case letters to represent
vectors (e.g. 𝑋 ), and italic lower-case letters to represent elements
in matrices or vectors (e.g. 𝑥 ). We use NumPy indexing convention
for indexing of the matrices and vectors. Furthermore, we add a bar
to notations to indicate deletion (e.g. D represents the samples of
the dataset and D̄ represents the samples removed from the dataset)
and a subscript to indicate it is constructed from the subset D𝑆=𝑠 .
Furthermore, the advantaged group (defined as arg max𝑠∈S Pr[𝑌 =

1|𝑆 = 𝑠]) is represented by 𝑠 = 1 while the disadvantaged group is
represented by 𝑠 = 0. The favorable positive outcome is represented
as 𝑦 = 1 while the negative outcome is 𝑦 = 0. We denote subsets of
the dataset as Dcond where the subscription is the set condition.

Formally, given an unfair input dataset D : (X, 𝑆, 𝑌 ), we use
X[𝑖]/𝑌 [𝑖]/𝑆 [𝑖] to denote the feature/label/membership of the 𝑖-th
sample inD. For simplicity, we useD𝑆=0 andD𝑆=1 to represent the
subset of D containing samples from group 0 and 1, respectively.
To represent only positive or negative samples from group 𝑠 , we
use D𝑆=𝑠,𝑌=1, and D𝑆=𝑠,𝑌=0, respectively.

The key idea of our proposed method is to leverage an auxiliary
model (𝑓0 and 𝑓1) to identify and delete the biased samples in the
training dataset, to create a debiased training dataset, which can
then be used to train the target classification model (𝑓 ). With the
above notation, our problem can be formally defined as follows.

Problem 1 (Model-guided Training Dataset Debiasing).
Given: (1) A dataset D with non-sensitive attributes X, a binary
sensitive attribute 𝑠 ∈ S := {0, 1}, and a binary outcome variable
𝑦 ∈ Y := {0, 1}, (2) auxiliary classifiers 𝑓0 and 𝑓1, (3) the debias
intensity 𝜆, (4) the target positive ratio 𝛼 , and (5) the consensus drop
weight 𝜖 ; Find: A debiased dataset D \ D̄ that is a subset of the
original dataset where (1) the sampling probability is controlled by 𝜖 ,
𝑓0, and 𝑓1, and (2) the amount of samples to remove is controlled by 𝜆
and 𝛼 .

4 DATA DEBIASING VIA GROUP CONSENSUS

In this section, we present the proposed GroupDebias method
(Section 4.1) and relevant theoretical analyses (Section 4.2). Our
algorithm systematically addresses biases present in the training
data by adaptively identifying and discarding samples that carry
historical bias. Specifically, drawing upon the idea of expert elic-
itation, we build expert models for each demographic group and
then leverage the consensus among group-specific experts to lo-
cate biased samples. Figure 2 shows an illustrative example of the
GroupDebias workflow. We further provide theoretical guarantees
on the fairness-utility trade-off of GroupDebias, showing that it
can achieve improved fairness with a small, bounded utility cost.

4.1 The GroupDebias Algorithm

We now formally describe the GroupDebias algorithm, summa-
rized in Algorithm 1. The core step of our algorithm is to estimate
the bias of each training sample by building and consulting the
auxiliary group expert models. Subsequently, samples with high
biases will be discarded to achieve data debiasing.

Given the learning algorithm, we first use D𝑆=0 and D𝑆=1 to
train the group expert models, namely 𝑓0 and 𝑓1 (Steps 1-3). Having
the group experts, we derive the consensus vector 𝐶 ∈ R |D | as
follows (Step 4):

Definition 1 (Consensus Vector). Given a dataset D, the con-
sensus vector 𝐶 ∈ R |D | describes the prediction consistency between
group expert models 𝑓0 (·) and 𝑓1 (·), where the 𝑖-th element corre-
sponding to the 𝑖-th sample is

𝐶 [𝑖] =
{

1 if 𝑓0 (X[𝑖]) = 𝑓1 (X[𝑖]),
0 otherwise.

We then debias the dataset D by discarding samples without
consensus. The number of samples to remove (i.e., deletion budget)
for each sensitive attribute group is controlled by two user-specified
parameters, including debias intensity 𝜆 ∈ [0, 1], and target positive
ratio 𝛼 ∈ [0, 1] (Step 7). Formally, the deletion budget of sensitive
attribute group 𝑠 ∈ S is calculated as 𝑛𝑠 :={

max
{
0,

⌊
𝜆
(
|D𝑆=𝑠,𝑌=0 | − 1−𝛼

𝛼 |D𝑆=𝑠,𝑌=1 |
) ⌋}

if |D𝑆=𝑠,𝑌=1 |
𝑛𝑠

< 𝛼,

max
{
0,

⌊
𝜆
(
|D𝑆=𝑠,𝑌=1 | − 𝛼

1−𝛼 |D𝑆=𝑠,𝑌=0 |
) ⌋}

otherwise.
(1)

Eq. (1) ensures that the sub-sampling does not reduce the percent-
age of positive samples less than the smallest percentage between
the sensitive attribute groups. As a result, the representativeness of
the dataset is not drastically changed. Intuitively, in Eq. (1), the tar-
get proportion 𝛼 specifies the expected ratio of samples that receive
favorable outcomes (i.e., positive labels 𝑌 = 1), while the debias
intensity 𝜆 ∈ [0, 1] indicates how many deletions are allowed in
each group to match the positive ratio 𝛼 . Setting 𝜆 = 1 would make
the positive sample ratio exactly 𝛼 for all sensitive groups, while
𝜆 = 0 implies no allowance for deleting any samples. We note that 𝜆
can be viewed as a trade-off parameter between fairness and utility:
a larger 𝜆 favors better fairness of the data by deleting more biased
training samples, but at the expense of potentially more utility loss
in terms of predictive performance degradation. In practice, users
can adjust 𝜆 and 𝛼 based on the application scenario to achieve
optimal data debiasing with GroupDebias.

Next, we discuss how to select the candidate samples for dele-
tion for each group. As described before, our objective is to make
the positive ratio for each group approach the user-defined target
positive ratio 𝛼 . The philosophy here is the likelihood of a positive
outcome should be the same regardless of whether the person is in
the protected (e.g., female) group. To achieve this goal with mini-
mal data removal, for a specific group 𝑠 ∈ S, we select its deletion
candidates based on its actual positive ratio 𝛼𝑠 and the given target
positive ratio 𝛼 . Specifically (Step 8), the deletion candidate set
Dcand

𝑠 of sensitive group 𝑠 is determined by

Dcand
𝑠 =

{
D𝑆=𝑠,𝑌=0 if |D𝑆=𝑠,𝑌=1 |

𝑛𝑠
< 𝛼,

D𝑆=𝑠,𝑌=1 otherwise.
(2)
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Table 1: Table of symbols.

Symbol Definition

X The non-sensitive attribute matrix.
𝑆 The sensitive attribute group vector.
𝑌 The classification label vector.
S The range of values an element 𝑠 ∈ 𝑆 can take.
Y The range of values an element 𝑦 ∈ 𝑌 can take.
D The set of samples that make up the training dataset. Each sample consists of (𝑋, 𝑠,𝑦).
D̄ Set of samples that are removed from the training dataset.
𝑓 Target model.
𝑓𝑠 Auxiliary group expert model trained on D𝑆=𝑠 .
𝑛 The total number of samples in D.
𝑛𝑠 The number of samples in D𝑆=𝑠 .
𝑛𝑠 The number of deleted samples from D𝑆=𝑠 .
𝐶 The binary consensus vector.
𝑊𝑠 The weight vector that controls the probability of a sample being selected.
𝛥 The demographic parity difference. Pr[𝑌 = 1|𝑆 = 1] − Pr[𝑌 = 1|𝑆 = 0] > 0.
𝜋𝑠 The proportion of positive labels in D𝑆=𝑠 . Pr[𝑌 = 1 | 𝑆 = 𝑠].
𝜆 The debias intensity parameter.
𝛼 The target positive ratio parameter.
𝛼𝑠 The positive label ratio of D𝑆=𝑠 .
𝜖 The consensus drop weight parameter.

Legend:             positive/negative sample             advantaged/disadvantaged group sample                      empirical risk minimize boundary           group expert model

Input Data
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Auxiliary Group Experts Consensus-based Data Debiasing
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Figure 2: An illustrative overview of the proposed consensus-based data debiasing framework. Group-specific experts is trained

on sensitive attribute group subsets of the data, and the consensus of the experts on each sample is leveraged to perform a

weighted subsampling of the dataset.

In order to take a weighted sample D̄𝑠 (Step 10), we calculate
the weight vector𝑊𝑠 := [𝑊𝑠 [1], · · · ,𝑊𝑠 [( |D|)]] as follows (Step
9), where 0 ≤ 𝜖 < 1 is the consensus drop weight.

𝑊𝑠 [𝑖] =


1 if (X[𝑖], 𝑆 [𝑖], 𝑌 [𝑖]) ∈ Dcand

𝑠 ,𝐶 [𝑖] = 0,
𝜖 if (X[𝑖], 𝑆 [𝑖], 𝑌 [𝑖]) ∈ Dcand

𝑠 ,𝐶 [𝑖] = 1,
0 otherwise.

(3)

Ensemble Variation.We further present an ensemble variation
of GroupDebias. The motivation for this variation is that the base
GroupDebias algorithm does not make use of the full dataset (i.e.,
the target model never sees the removed samples D̄). The ensemble
variation allows the full dataset to be used in training. To be specific,
the target model does not get to leverage the whole training set due
to subsampling. This results in a greater variance in performance
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and potential information loss depending on the random seed used.
However, this can be alleviated by training multiple copies of the
model on different variations of the dataset. Some of the samples
without consensus will be kept at random, so each dataset is likely to
keep a different subset of the samples without consensus. Therefore,
the ensemble as a whole will see more of the training set than each
individual model that makes up the ensemble.

Algorithm 1 The GroupDebias Algorithm
Input: Dataset D, Auxiliary Group Expert Classifiers 𝑓0 and 𝑓1,

Debias Intensity 𝜆, Target Positive Ratio 𝛼 , Consensus Drop
Weight 𝜖

1: for each sensitive group 𝑠 ∈ S do

2: Train group expert 𝑓𝑠 (·) on D𝑆=𝑠

3: end for

4: Create consensus vector 𝐶 (Def. 1)
5: Initialize D̄ ← ∅
6: for each sensitive group 𝑠 ∈ S do

7: Calculate deletion budget 𝑛𝑠 (Eq. (1))
8: Construct set of deletion candidates Dcand

𝑠 (Eq. (2))
9: Create weight vector𝑊𝑠 (Eq. (3))
10: Take a weighted sample D̄𝑠 from D using weights𝑊𝑠 s.t.
|D̄𝑠 | = 𝑛𝑠

11: Update D̄ ← D̄⋃ D̄𝑠

12: end for

13: return Debiased dataset D \ D̄

4.2 Theoretical Analysis

We provide a theoretical analysis of the GroupDebias algorithm
with respect to the DP (demographic parity) fairness metric. We
show that there exists a classifier trained with the GroupDebias
algorithm that results in improved fairness and a bounded loss of
utility.

To be specific, we establish the following theoretical guarantees
for GroupDebias in reducing the demographic parity difference
between the sensitive attribute groups:

Theorem 1. Under the assumptions listed in Appendix C.2, if
𝑛0 >

𝜋1
(1−𝜆𝜋1 )𝛥 (i.e., the dataset size of the minority group is not

too small), then for any given 𝜖 > 0, with probability at least 1 −
e−Ω (𝑛) , under the target ratio 𝛼 := |D𝑆=1,𝑌=1 |

𝑛1
(i.e., the positive rate

of the majority group), there exists a classifier 𝑓 : X × S → Y that
minimizes the classification error over the debiased training setD\D̄
and achieves both improved fairness and bounded loss of utility:
• Improved fairness (demographic parity):��Pr[𝑓 (X, 𝑆) = 1 |𝑆 = 0] −Pr[𝑓 (X, 𝑆) = 1 |𝑆 = 1]

��≤ (1−𝜆)𝛥+𝑂 ( 1
𝑛

)
;

(4)
• Bounded loss of utility (balanced error rate):

Pr[𝑓 (X, 𝑆) ≠ 𝑌 | 𝑆 = 0] + Pr[𝑓 (X, 𝑆) ≠ 𝑌 | 𝑆 = 1] ≤ 𝜆𝛥 +𝑂
( 1
𝑛

)
.

(5)

Theorem 1 (full proof in Appendix C.3) gives a probabilistic
guarantee to improvement in fairness and the bounded reduction in

utility. In Eq. (4), the difference in the proportion of positive𝑌 values
in each sensitive attribute group is bounded by (1 − 𝜆)𝛥 +𝑂

( 1
𝑛

)
.

This improvement in fairness is dependent on the dataset size 𝑛, the
debias intensity 𝜆, and the original demographic parity difference
𝛥. With a high debias intensity and large dataset, the demographic
parity difference for 𝑓 can get very close to 0, which means a well-
learned 𝑓 is a very fair classifier. Meanwhile, in Eq. (5), the balanced
error rate is bounded by 𝜆𝛥 +𝑂

( 1
𝑛

)
. This is a similar bound to the

bound on fairness in Eq. (4). However, the difference is that we
have a 𝜆𝛥 term rather than a (1−𝜆)𝛥 term. This means the smaller
the debias intensity, the smaller the upper bound of the error rate
becomes. The implication of these two probabilistic guarantees
shows the 𝜆 controls for the the fairness-utility trade-off (which we
also corroborate empirically in Section 5.2).

Although our algorithm is primarily focused on improving the
DP, we also benchmark performance on another fairness metric,
EO (equalized odds).

Proposition 1 (Relation between demographic parity and
eqalized odds). Let

DP := Pr[𝑌 = 1 | 𝑆 = 1] − Pr[𝑌 = 1 | 𝑆 = 0],

EO𝑌=𝑦 := Pr[𝑌 = 1 | 𝑌 = 𝑦, 𝑆 = 1] − Pr[𝑌 = 1 | 𝑌 = 𝑦, 𝑆 = 0],

Util𝑆=𝑠 := Pr[𝑌 = 0 | 𝑌 = 0, 𝑆 = 𝑠] + Pr[𝑌 = 1 | 𝑌 = 1, 𝑆 = 𝑠]

denote the demographic parity difference of the prediction𝑌 , equalized
odds difference w.r.t. class 𝑦, and the utility of group 𝑠 , respectively.
Then,

DP = 𝛥 · (Util𝑆=1 − 1) + 𝜋0 · EO𝑌=1 + (1 − 𝜋0) · EO𝑌=0 .

Note: In Theorem 1, utility is defined as the error rate weighing both
groups equally while here we define the per-group utility as the accu-
racy weighing both outcomes (Y=1, Y=0) equally.

Proposition 1 (full proof at Appendix C.4) shows that DP and
EO are correlated. Thus, our algorithm is expected to improve EO
implicitly although it is primarily designed to improve DP.

5 EXPERIMENTS

5.1 Setting

Datasets.We run empirical evaluations on four datasets compar-
ing against two sensitive attributes each, totalling to eight unique
tasks. Table 2 gives the dataset statistics for the tasks we benchmark
upon. Further details of the setup for reproducibility are in Appen-
dix A. Code can be found at https://anonymous.4open.science/r/
GroupDebias.
Baselines. We use six target models 𝑓 , including (1) logistic re-
gression, (2) k-neighbors classifier, (3) decision tree classifier, (4)
a multi-layer perceptron, (5) AdaBoost, and (6) bagging. For the
fair baselines, we select four different algorithms, including (1) one
pre-processing baseline, Reweight [22], a model-agnostic reweigh-
ing scheme, (2) one in-processing baseline, Reduction (EO/DP) [2],
which performs gradient reductions, (3) one post-processing base-
line, Threshold (EO/DP) [18], which adjusts the model based on 𝑆 ,
𝑌 , and 𝑌 , and (4) one ensemble baseline, AdaFair [20], which uses
AdaBoost to reduce unfairness.
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Table 2: Statistics of the task settings utilized to benchmark our method. We utilize four different datasets and compare against

two sensitive attributes per dataset for a total of eight tasks.

Dataset Sensitive Attribute # Features

# Samples % Y=1

Total S=1 S=0 S=1 S=0

COMPAS [27] sex 11 5875 4714 1161 49.15% 36.18%
race 3528 2347 51.33% 39.45%

LSA [1] gender 9 49900 26183 23717 14.93% 25.41%
race 37545 12355 23.17% 9.99%

Adult [3] gender 98 45222 30527 14695 31.25% 11.36%
race 38903 6319 26.24% 15.84%

Bank [34] age 57 30488 29624 864 12.35% 23.03%
marital status 17492 12996 11.75% 13.87%

We compare these results with the Dummy model which ran-
domly predicts classes with a probability proportional to the class
distribution in the training data and the Vanilla model which is
the target model trained on the original training dataset without
modifications.
Metrics. We use six evaluation metrics: two utility metrics, two
fairness metrics, and two trade-off metrics. To quantify utility, we
use both the accuracy (Acc.) and, due to some datasets being signif-
icantly imbalanced, the balanced accuracy (BAcc.) [7]. To quantify
fairness, we utilize both the demographic party (DP) metric [23] and
the equalized odds (EO) metric [17]. Because there are no existing
metrics for quantifying the trade-off between utility and fairness,
we propose two new metrics, Fairness-Utility Relative Gain (FURG)
and Fairness-Utility Trade-off Ratio (FUTR), to provide a more com-
prehensive and intuitive assessment for the fair learning algorithms.
In our proposed trade-off metrics, we consider the trade-offs made
in UG (utility gain) and unfairness drop (UD).

Formally, we define utility gain (UG) of 𝑓fair over 𝑓 as

UG(𝑓 , 𝑓dummy, 𝑓fair) :=
𝑚(𝑓fair) −𝑚(𝑓 )

𝑚(𝑓 ) −𝑚(𝑓dummy)
(6)

where 𝑓 is the target model, 𝑓dummy is the dummy model, and 𝑓fair
is the target model with a fairness method applied to it. The utility
metric function𝑚 (e.g., Acc., BAcc) is defined so that higher values
corresponds to better model performance. A higher UG means that
𝑓fair bears less utility loss (or gains more utility) over 𝑓 .

A dummy model (𝑓dummy) typically carries no bias as it gives
random predictions, thus any model with utility worse than 𝑓dummy
is strictly worse than random prediction in both utility and fairness.
Therefore, we use 𝑓dummy as the baseline in Eq. (6) for computing
utility drop (instead of 0) to highlight the relative performance drop
of fair learning algorithms in a more practical sense.

Meanwhile, unfairness drop (UD) is defined as

UD(𝑓 , 𝑓fair) :=
1
|M|

∑︁
𝑚∈M

𝑚(𝑓 ) −𝑚(𝑓fair)
𝑚(𝑓 ) (7)

where we share the same notation 𝑓 and 𝑓fair as above. This metric
takes in set of fairnessmetricsM where each fairnessmetric assigns
lower values to models with better fairness. A higher UD means
that 𝑓fair obtains more fairness improvement over 𝑓 .

Ideally, the best fair learning method should maximize the in-
crease in utility (or, equivalently, minimize the reduction in utility)

while also maximize the reduction in unfairness. However, there
is often a tension between learning utility and fairness. In order
to quantify the fairness-utility trade-off, we further introduce two
combined metrics as follows. The first is the Fairness-Utility Rel-
ative Gain (FURG) metric, which is defined as the sum of the UG
(utility gain) and UD (unfairness drop). The intuition of FURG is to
measure the total combined gain in utility and fairness, with the
equal importance to both utility and fairness. Another choice is the
Fairness-Utility Trade-off Ratio (FUTR) metric, which is defined as
the negative ratio between UD (unfairness drop) and UG (utility
gain). The intuition of FUTR is to consider the return on invest-
ment (ROI), i.e., the unfairness reduction per unit learning utility
loss. To avoid ‘divide-by-zero’ issue in FUTR, we replace UG by
min(UG,−0.01) in experiments. The intuition is that we assume a
minimum utility loss of 0.01 for 𝑓fair. Given the tension between
the utility and fairness, this is a reasonable treatment since the
improvement of the model fairness is often at the expense of the
learning utility loss to some degree. For both FURG and FUTR, the
larger the metric value, the better the fairness-utility trade-off.

5.2 Results and Discussion

5.2.1 Main Results. Table 3 shows the effectiveness on each dataset
using the logistic regression target model. This table shows that
with a logistic regression as the target model, for each dataset, our
approach has the best trade-off as measured by at least one of the
trade-off metrics we use: FURG, or FUTR. In the cases where our
approach does not have the best trade-off value, it is close to the
best trade-off. Furthermore, the Fairness column of Table 3 provides
empirical results which is consistent with Proposition 1 in that a
change in fairness according to one fairness metric tends to mean
a change in fairness in the same direction according to the other
fairness metric.

Table 4 presents the result of the average ranking of each model
on the full array of settings (two sensitive attributes for four datasets;
to see the results by task, see Appendix D). In this table, eachmethod
is ranked with 1 being the best score, 2 being the second best, and so
on. This is done for 8 tasks: the 4 datasets compared on 2 sensitive
attributes using 6 different target models for a total of 48 different
settings. Our method consistently ranks highly compared to the
other approaches.
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Table 3: Comparison of our method with other FairML techniques (80-20 split, use logistic regression as target classifier). Ours

is a single target classifier trained with GroupDebias, no ensemble. Δ represents the utility gain (UG) or unfairness drop (UD)

for the utility and fairness metrics respectively. Explanations for select FURG and FUTR values in Appendix D.1. We bold the

best FURG/FUTR value for each task group, and underline the second best value.

Task Method

Utility Fairness Combined

Acc. Δ BAcc. Δ DP Δ EO Δ FURG FUTR

C
O
M
P
A
S
(
s
e
x
)

Dummy 49.69±2.1 - 49.49±2.2 - 0.97±0.6 - 4.40±4.3 - - -
Vanilla 69.60±0.6 - 69.00±0.6 - 33.62±1.6 - 38.23±3.9 - - -
Reweight 68.89±0.9 -3.59% 67.68±0.9 -6.74% 27.51±2.2 -18.18% 34.27±5.5 -10.36% 9.10 2.76
Reduction𝐷𝑃 68.92±1.0 -3.42% 68.59±1.0 -2.08% 10.48±4.1 -68.82% 8.57±4.3 -77.60% 70.46 26.62
Reduction𝐸𝑂 68.73±0.9 -4.36% 68.23±0.9 -3.93% 12.85±2.8 -61.80% 10.94±3.3 -71.38% 62.44 16.06
Threshold𝐷𝑃 66.98±0.8 -13.16% 66.83±0.8 -11.10% 3.15±1.0 -90.64% 14.56±5.1 -61.92% 64.15 6.29
Threshold𝐸𝑂 62.04±1.0 -37.95% 60.26±1.0 -44.81% 3.22±2.6 -90.42% 6.36±3.9 -83.37% 45.51 2.10
AdaFair 59.54±3.6 -50.51% 58.10±4.7 -55.87% 19.43±12.4 -42.20% 25.65±16.1 -32.92% -15.63 0.71
Ours 69.04±1.2 -2.82% 68.86±1.2 -0.71% 2.71±2.6 -91.94% 7.73±2.3 -79.78% 84.09 48.62

A
d
u
l
t
(
s
e
x
)

Dummy 62.36±0.4 - 49.59±0.4 - 0.72±0.4 - 2.41±1.4 - - -
Vanilla 84.68±0.2 - 76.51±0.3 - 18.92±1.1 - 12.95±3.6 - - -
Reweight 81.28±0.3 -15.24% 63.68±0.8 -47.66% 8.12±0.5 -57.10% 9.26±1.5 -28.51% 11.35 1.36
Reduction𝐷𝑃 82.01±0.4 -11.98% 69.70±0.8 -25.30% 1.49±0.6 -92.15% 32.20±3.7 +148.64% -46.88 -1.52
Reduction𝐸𝑂 84.63±0.2 -0.23% 76.34±0.3 -0.64% 18.21±1.2 -3.75% 10.64±4.0 -17.81% 10.35 10.78
Threshold𝐷𝑃 79.37±0.2 -23.79% 73.45±0.3 -11.36% 0.72±0.8 -96.18% 11.67±0.8 -9.90% 35.47 3.02
Threshold𝐸𝑂 81.84±0.3 -12.74% 72.35±0.6 -15.44% 8.99±1.1 -52.47% 3.34±1.8 -74.18% 49.23 4.49
AdaFair 75.21±0.0 -42.41% 50.00±0.0 -98.47% 0.00±0.0 -100.00% 0.00±0.0 -100.00% 29.56 1.42
Ours 84.39±0.3 -1.29% 77.01±0.4 +1.86% 14.57±1.4 -23.00% 5.35±1.0 -58.68% 41.12 40.84

L
S
A
(
r
a
c
e
)

Dummy 67.88±0.4 - 49.78±0.4 - 0.39±0.3 - 2.28±1.1 - - -
Vanilla 83.51±0.2 - 63.63±0.3 - 10.01±0.3 - 24.78±1.2 - - -
Reweight 80.59±0.1 -18.69% 51.30±0.1 -89.06% 0.67±0.0 -93.35% 2.63±0.3 -89.39% 37.49 1.70
Reduction𝐷𝑃 83.25±0.4 -1.68% 62.30±1.3 -9.62% 4.38±5.0 -56.27% 13.80±10.1 -44.33% 44.65 8.90
Reduction𝐸𝑂 82.91±0.7 -3.85% 61.11±2.4 -18.22% 4.82±4.7 -51.89% 17.42±6.9 -29.71% 29.77 3.70
Threshold𝐷𝑃 81.30±0.2 -14.12% 62.55±0.3 -7.84% 0.48±0.3 -95.19% 17.62±1.8 -28.89% 51.06 5.65
Threshold𝐸𝑂 80.94±0.1 -16.44% 54.12±0.3 -68.69% 0.84±0.6 -91.63% 2.24±1.0 -90.97% 48.74 2.15
AdaFair 80.09±0.0 -21.87% 50.00±0.0 -98.42% 0.00±0.0 -100.00% 0.00±0.0 -100.00% 39.85 1.66
Ours 83.25±0.2 -1.64% 64.28±0.3 +4.63% 4.14±0.7 -58.61% 3.04±1.7 -87.72% 74.66 73.16

B
a
n
k
(
a
g
e
)

Dummy 77.68±0.3 - 49.90±0.6 - 1.59±1.6 - 5.22±3.7 - - -
Vanilla 89.66±0.3 - 67.81±0.5 - 10.31±3.3 - 14.38±10.6 - - -
Reweight 87.51±0.1 -17.99% 50.98±0.1 -93.96% 0.57±0.3 -94.46% 1.74±1.3 -87.90% 35.21 1.63
Reduction𝐷𝑃 89.57±0.2 -0.74% 66.92±0.5 -4.98% 0.91±0.9 -91.20% 12.74±6.3 -11.42% 48.45 17.93
Reduction𝐸𝑂 89.71±0.3 +0.38% 67.68±0.3 -0.72% 3.91±2.0 -62.09% 7.09±6.8 -50.72% 56.24 56.41

Threshold𝐷𝑃 89.52±0.2 -1.18% 66.98±0.4 -4.66% 1.79±0.9 -82.67% 16.65±6.3 +15.76% 30.54 11.47
Threshold𝐸𝑂 87.83±0.3 -15.33% 67.19±0.3 -3.46% 5.08±2.9 -50.72% 10.89±3.4 -24.32% 28.12 3.99
AdaFair 87.40±1.6 -18.87% 60.24±5.9 -42.29% 8.84±8.2 -14.28% 10.62±7.3 -26.16% -10.36 0.66
Ours 89.66±0.4 -0.05% 72.81±1.0 +27.93% 5.47±2.3 -46.97% 5.65±4.1 -60.69% 67.77 53.83

Table 5 provides a comparison of our approach against the other
fairness methods as well as the target model baselines for all combi-
nation of tasks and machine learning models we have benchmarked
on with five seeds per run (to see the results by task, see Appendix

D). Compared to the other methods and even the target model, on
average, our approach has better utility and fairness according to
the EO and balanced accuracy metrics.
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Table 4: Average rank of different FairML techniques on all 8 tasks (4 datasets x 2 sensitive attributes) with 6 target machine

learning models. We further introduce Ours𝑒𝑛𝑠 , an ensemble of multiple target classifiers trained with independently sampled

subsets, to validate its ability in reducing the variance brought about by random sampling process. The missing cells represent

invalid combinations.

Method

LR KNN MLP DT ADA BAG

FURG FUTR FURG FUTR FURG FUTR FURG FUTR FURG FUTR FURG FUTR
Reweight 6.38±1.22 6.75±0.83 - - - - 5.38±2.29 4.62±2.23 5.25±1.92 4.25±2.05 6.12±2.03 4.88±2.71
Reduction𝐷𝑃 4.38±2.18 4.88±1.76 - - - - 4.62±2.23 3.88±2.37 3.75±2.28 3.75±2.33 4.25±1.48 3.75±1.09
Reduction𝐸𝑂 5.25±2.17 4.00±1.94 - - - - 5.38±2.39 5.38±2.74 5.38±1.87 5.12±2.47 6.00±1.94 5.38±2.12
Threshold𝐷𝑃 4.38±1.11 4.62±0.86 2.62±0.99 3.50±0.50 3.25±0.83 3.38±0.48 4.00±1.32 4.50±1.12 4.00±2.12 4.88±1.54 4.00±2.24 5.88±1.17
Threshold𝐸𝑂 3.38±2.06 5.12±1.27 2.50±1.32 3.50±0.50 2.50±1.22 3.62±0.48 5.88±1.36 5.50±1.87 5.62±1.11 5.25±1.71 4.88±1.45 4.62±1.73
AdaFair 7.25±1.09 7.38±0.86 - - - - 5.38±2.74 6.50±1.41 6.12±2.98 6.75±1.92 6.38±1.58 6.88±1.54
Ours 2.38±1.32 1.38±0.48 2.38±0.86 1.75±0.43 2.00±1.00 1.38±0.48 2.88±1.62 2.88±1.17 3.50±1.66 3.75±1.39 2.38±0.70 2.88±1.36
Ours𝑒𝑛𝑠 2.62±1.32 1.88±0.60 2.50±1.22 1.25±0.43 2.25±0.97 1.62±0.48 2.50±1.12 2.75±1.98 2.38±0.86 2.25±1.71 2.00±1.50 1.75±1.09

Table 5: The difference between our approach and other fairnessmethods aswell as the targetmodel baselines for all combination

of tasks and machine learning models we have benchmarked on. Our approach has a minimal impact on the learning utility

with either a minor decrease in Acc. or even increase in BAcc., and meanwhile it consistently reduces both DP and EO.

Utility Fairness

Acc. BAcc. DP EO

Ours

Vanilla -0.009±0.01 0.004±0.02 -0.066±0.07 -0.077±0.09
Reweight -0.005±0.02 0.033±0.06 -0.036±0.07 -0.037±0.08
Reduction𝐷𝑃 -0.005±0.02 0.01±0.02 -0.013±0.05 -0.023±0.07
Reduction𝐸𝑂 -0.007±0.02 0.004±0.02 -0.035±0.05 -0.033±0.06
Threshold𝐷𝑃 0.008±0.02 0.024±0.02 0.044±0.05 -0.04±0.06
Threshold𝐸𝑂 0.005±0.02 0.027±0.03 -0.003±0.04 -0.004±0.06
AdaFair 0.005±0.04 0.058±0.1 -0.037±0.08 -0.037±0.08

Ours𝑒𝑛𝑠

Vanilla -0.005±0.01 0.008±0.02 -0.066±0.08 -0.08±0.09
Reweight 0.0±0.02 0.039±0.06 -0.036±0.07 -0.038±0.08
Reduction𝐷𝑃 0.0±0.01 0.016±0.02 -0.012±0.05 -0.025±0.07
Reduction𝐸𝑂 -0.002±0.02 0.01±0.02 -0.034±0.05 -0.034±0.06
Threshold𝐷𝑃 0.012±0.02 0.029±0.02 0.044±0.05 -0.044±0.06
Threshold𝐸𝑂 0.009±0.02 0.031±0.03 -0.003±0.04 -0.008±0.05
AdaFair 0.01±0.04 0.064±0.1 -0.037±0.08 -0.038±0.08

Overall, as shown in Table 5, for all combination of tasks and
machine learning models we have benchmarked on, our approach’s
change in accuracy is about the middle of the average accuracy
change of the fair ML methods we compare against. Furthermore,
our approach has, on average, a smaller DP value than all the other
approaches except for Threshold𝐷𝑃 . In terms of fairness-utility
trade-off, our method consistently outperforms the rest in terms
of the fairness-utility trade-off (Table 3). Table 4 shows that our
method has consistently strong performance on all the datasets
across diverse model architectures with our approach.

We also show the effectiveness of the debias intensity hyperpa-
rameter 𝜆 to control the fairness-utility trade-off. The 𝜆 controls the
amount of subsampling done. The larger the parameter value, the
more samples are removed. In Figure 3, the varying debias intensi-
ties are plotted for our approach with a logisitic regression target
model with the Law School Admissions (race) task. As shown in the
figure, the larger the 𝜆, the better (lower) the fairness metric (for
both DP and EO) and the worse (lower) the utility metric (accuracy).
For a large range of 𝜆, the utility stays in the range of [0.830, 0.840]

(x-axis of Figure 3), indicating that our proposed method has a
minor impact on the learning utility.

As mentioned earlier, the debiased dataset by our method can be
used to train any target model, allowing it to be applied to a wide
range of machine learning models. As we can observe from Table 4,
our approach has consistently strong performance on a variety of
targetmodels. Only one other approach: Threshold𝐷𝑃 /Threshold𝐸𝑂
supports the full range of models our approach can apply to. The
other methods we compare against cannot be directly applied to
all the models.

5.2.2 Ensemble Variation. Table 4 shows the ensemble variant of
our approach further improves performance compared to the single
model trained on a single subsampled dataset. Furthermore, Table
5 compares the ensemble version of GroupDebias against the
other methods and the target model. It shows that, on average, our
approach has better utility and fairness according to the EO and
balanced accuracy metrics. For the accuracy metric, the ensemble
variation is on the higher end, matching Reweight and Reduction𝐷𝑃
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(a) The effect of 𝜆 on DP-Acc trade-off

(b) The effect of 𝜆 on EO-Acc trade-off

Figure 3: The trade-off between fairness (demographic parity

and equalized odds) and utility (accuracy) on the Law School

Admissions (race) dataset with the logistic regression target

model.

while being slightly worse than Reduction𝐸𝑂 . On the DP fairness
metric, performance is about the same as the single model variation.
Overall, our ensemble approach performs better than all the other
approaches in terms of the fairness-utility trade-off, with the only
exception in model performance by Reduction𝐸𝑂 and in unfairness
reduction by Threshold𝐷𝑃 .

5.2.3 Computation Efficiency. We compare the runtime of each
method on the full combination of each dataset-sensitive attribute
task and models used to generate our results (Figure 4). As model
training tends to take the most time and our method trains group
experts and a final model on a subsampled dataset, we look at

the relationship between time and the size of the largest sensi-
tive attribute group. We can see that our method is faster than
Reweight and Reduction (Reduction𝐷𝑃 and Reduction𝐸𝑂 ) and our
ensemble version has performance comparable to AdaFair’s. Our
single-model version typically has equivalent or slightly longer
runtime compared to Threshold (Threshold𝐷𝑃 and Threshold𝐸𝑂 ).
Generally, the performance of our approach is very lightweight
compared to the other approaches while being able to apply to a
much broader range of model architectures.

6 CONCLUSION

In this paper, we propose GroupDebias, an approach for reducing
group unfairness in machine learning models by sub-sampling the
dataset using the prediction of auxiliary group expert models. We
provide a novel perspective to bias mitigation which uses the model
to guide the data debiasing process. Compared to other fair machine
learning methods, we are able to get superb fairness-utility trade-
off with minimal assumptions about the target machine learning
model. We provide theoretic bounds for the reduction in balanced
accuracy and a guarantee for the improvement in the demographic
parity metric. We also illustrate the advantage of our approach
through comprehensive benchmarks. As machine learning become
more integrated in real world applications, model fairness will
become increasingly important in a wide variety of scenarios. In
the approach outlined in this paper, we focus on rectifying historical
bias. Furthermore, our proposed metrics is limited in that the values
are highly dependent on the particular specific metrics used. We
hope our unique approach based on group experts will provide new
insight for developing versatile group fairness methods and inspire
others to investigate the effects of consensus-based approaches on
different types of biases as well as develop more general fairness-
utility trade-off metrics.
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Supplementary Materials

For our supplementary materials, we provide the implementa-
tion details for reproducing our results (Section A), statistics and
details about the datasets we have benchmarked upon (Section B),
details supporting our algorithm design including assumptions and
proofs supporting our theoretical analysis (Section C), and addi-
tional experimental results benchmarking the fair ML techniques
(Section D).

A REPRODUCIBILITY

A.1 Base Models

We use four base models: logistic regression, k-neighbors classifier,
decision tree classifier (with no limit to the max depth), a multi-
layer perceptron (with one layer of 8 neurons trained for up to 50
iterations), AdaBoost with 5 estimators and a decision tree base
model, and bagging with 5 estimators and a decision tree base
model. All other parameters are set to the default parameters as set
in sklearn. The parameters are chosen due to the relatively small
size of the datasets.

A.2 Our Algorithm

Our algorithm has three hyperparameters: the debias intensity, 𝜆,
the target positive sample ratio, 𝛼 , and the consensus drop weight, 𝜖 .

In our experiments, we test 0.5 and 1.0 as the debias intensity
for 𝜆. We decide to use 1.0 to prioritize fairness over accuracy. For
𝛼 , we use the group max positive sample rate after comparing the
performance of that, the advantaged group positive sample rate,
and the overall positive sample rate on the COMPAS (sex) task.
Finally, we set 𝜖 to 0.1 so that the probability of selecting those
points is less than the disagreement samples after trying another
approach where we select from the samples with disagreement
uniformly at random and if there are more points to subsample
than the number of disagreement samples, then select from the
samples with consensus also uniformly at random.

A.2.1 Ensemble Variant. For the ensemble version of our approach,
we use an ensemble of five models trained on five variations of the
dataset generated via our method.

A.3 Computing Infrastructure

Our code should be able to run on any modern computer. We have
been able to replicate the results on a laptop running Windows
11 Home with 32 GB of RAM without using the GPU and using
13th Gen Intel(R) Core(TM) i9-13900HX 2.20GHz CPU. We use the
sklearn v1.3.0 [35] implementations for the base models and the
aif360 v0.5.0 [4] implementations for fair baselines.

B DATASETS

The input is zero-mean normalized and each task is run five times
with five train-test split of the dataset done by shuffling and splitting
the full dataset into an 80-20 split.

B.1 COMPAS (ProPublica COMPAS Dataset)

The COMPAS prediction task is to leverage information about an
individual’s criminal history and demographics to identify whether
the individual would re-offend within two years [27].
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We look at the COMPAS dataset in terms of the sensitive attribute
sex, identified as COMPAS (sex), and the sensitive attribute race,
identified as COMPAS (race).

B.2 LSA (Law School Admissions Dataset)

The LSA prediction task is to leverage the numerical credentials of
the individual to identify admission decisions [1].

We look at the LSA dataset in terms of the sensitive attribute
gender, identified as LSA (gender), and the sensitive attribute race,
identified as LSA (race). We use a subset of the dataset where
we remove some samples with positive outcome for the disadvan-
taged groups to exaggerate the inequality between the groups. This
version of the dataset is provided with our code.

B.3 Adult (Adult Census Income Dataset)

The Adult prediction task is to leverage demographic information
about an individual collected by a census to identify whether the
individual makes more than $50K a year [3].

We look at the Adult dataset in terms of the sensitive attribute
gender, identified as Adult (gender), and the sensitive attribute
race, identified as Adult (race).

B.4 Bank (Bank Marketing Dataset)

The Bank prediction task is to leverage financial and demographic
features to predict whether an individual would subscribe a term
deposit [34]. We apply a pre-processing to the age attribute as done
in Kamiran and Calders [21] to convert it to a binary value where
the advantaged group is 25 ≤ age < 60 and the disadvantaged group
is age < 25 or age ≤ 60 as suggested in Le Quy et al. [28].

We look at the Bank dataset in terms of the sensitive attribute
age, identified as Bank (age) and the sensitive attribute marital
status, identified as Bank (marital status). For this, we specifically
use the marital=married attribute.

C ALGORITHM DETAILS APPENDIX

C.1 Consensus

In our algorithm, we use consensus to determine whether there
is a discrepancy in the standard. This crucially depends on the
assumption that the feature space for both groups are similar. If the
feature space is not similar, that represents a dramatic distribution
shift from the distribution of samples in one sensitive attribute
group to the other and an auxiliary group expert model for one
sensitive attribute group would not have good inference on the
other group.

We find empirically that the assumption that the feature space
is similar is generally true. For the tasks we’ve applied our method
upon, the mean absolute difference between the average feature
value for each sensitive attribute group (aside from the sensitive
attribute features) is less than 0.01 for the datasets we use for our
empirical analysis (Table 6).

C.2 Assumptions

Without loss of generality, we make the following standard assump-
tions to facilitate our analysis.

We make a standard assumption on the data collection process.

Table 6: The mean absolute difference in average feature

values between the two sensitive attribute groups.

Dataset Group Feature Difference
COMPAS (sex) 0.025
COMPAS (race) 0.037
Adult (sex) 0.035
Adult (race) 0.018
LSA (sex) 0.048
LSA (race) 0.079
Bank (age) 0.076

Bank (marital status) 0.039

Assumption 1 (Data collection). The original dataset D
consists of two independent groups: the disadvantaged group has
𝑛0 = Θ(𝑛) i.i.d. samples (𝑋, 0, 𝑦) with (𝑋,𝑦) ∼ 𝑃X,𝑌 |𝑆=0, and the
advantaged group has 𝑛1 = Θ(𝑛) i.i.d. samples (𝑥, 1, 𝑦) with (𝑋,𝑦) ∼
𝑃X,𝑌 |𝑆=1. We do not assume that 𝑃X,𝑌 |𝑆=0 and 𝑃X,𝑌 |𝑆=1 are identical.

We assume that features are sufficiently fine-grained such that
there are only at most a few repeated samples in the dataset. The
intuition behind this assumption is that the dataset size is correlated
with feature granularity.When collecting data, a good dataset would
have enough samples to provide insight to the underlying trend, but
not so much that the dataset is dominated with duplicate samples,
because it would be a waste of resources.

Assumption 2 (Feature granularity). There exists 0 ≤ 𝛾 ≤ 1
such that

Pr[X = 𝑆 | 𝑆 = 𝑠] ≤ 𝛾

𝑛𝑠
, ∀𝑆 ∈ X, ∀𝑠 ∈ S.

For example, if at least one of the features is continuous, this
assumption holds with 𝛾 = 0.

We assume that unfairness exists (in terms of demographic par-
ity).

Assumption 3 (Unfairness). The advantaged group is more
likely to be positively labeled than the disadvantaged group:

𝛥 := Pr[𝑌 = 1 | 𝑆 = 1] − Pr[𝑌 = 1 | 𝑆 = 0] > 0.

We assume that the classification problem is well defined.

Assumption 4 (Well-definedness). The label 𝑌 is a function
𝑌 : X × S → Y of the features 𝑋 and the attribute 𝑆 .

Since our method applies to various learning algorithms, we do
not make assumptions on the learning algorithm in order to avoid
the complication of different learning theories for different learning
algorithms. Instead, we assume that the group experts are perfect
and will show that our debiased training set D \ D̄ gives rise to
a classifier that achieves zero classification error over D \ D̄ and
is fair without significant loss of utility. As long as the learning
algorithm is sufficiently good, we can expect that the learned model
is close to this ideal classifier.

Assumption 5 (Group experts). We assume that the group
experts give the ground-truth labels.

𝑓𝑠 (𝑋 ) = 𝑌 (𝑋, 𝑠), ∀𝑋 ∈ X, 𝑠 ∈ S.
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C.3 Proof of Theorem 1

Note that for each 𝑠 ∈ S,

𝐷𝑠 := |D𝑆=𝑠,𝑌=0 | =
∑︁

(x𝑖 ,𝑠𝑖 ,𝑦𝑖 ) ∈D𝑆=𝑠

1[𝑦𝑖=0] ∼ Binomial(𝑛𝑠 , 1 − 𝜋𝑠 )

is a sum of 𝑛𝑠 i.i.d. Bernoullis 1[𝑦𝑖=0] . Let 𝛤 := (1−𝜋0 )−𝜆𝛥
𝛾 ≥ (1 −

𝜋0) − 𝜆𝛥. (Note that we are using the convention that 1/0 = +∞,
so the inequality above still holds even when 𝛾 = 0.)

Using McDiarmid’s inequality w.r.t. the Bernoullis 1[𝑦𝑖=0] , since
the deviation (i.e., the numerator in McDiarmid’s inequality) is

𝛤𝑛0𝑛1 − 𝑛1 − E[(1 − 𝜆)𝑛1𝐷0 + ((𝜆 + 𝛤 )𝑛0 − 1)𝐷1 − 𝐷0𝐷1]
= 𝛤𝑛0𝑛1 − 𝑛1 − [(1 − 𝜆)𝑛1𝑛0 (1 − 𝜋0)
+ ((𝜆 + 𝛤 )𝑛0 − 1)𝑛1 (1 − 𝜋1) − 𝑛0 (1 − 𝜋0)𝑛1 (1 − 𝜋1)]

= ((𝛤𝜋1 − 𝜋0 + 𝜋0𝜋1)𝑛0 − 𝜋1)𝑛1

≥ (((1 − 𝜋0 − 𝜆𝛥)𝜋1 − 𝜋0 + 𝜋0𝜋1)𝑛0 − 𝜋1)𝑛1

= ((𝜋1 − 𝜋0 − 𝜆𝜋1𝛥)𝑛0 − 𝜋1)𝑛1

= ((1 − 𝜆𝜋1)𝛥𝑛0 − 𝜋1)𝑛1 > 0,

and the sum of squared difference bounds w.r.t. the Bernoullis (i.e.,
the denominator in McDiarmid’s inequality) is

𝑛0 max{((1 − 𝜆)𝑛1 − 𝑛1)2, ((1 − 𝜆)𝑛1 − 0)2}
+ 𝑛1 max{((𝜆 + 𝛤 )𝑛0 − 1 − 𝑛0)2, ((𝜆 + 𝛤 )𝑛0 − 1 − 0)2}

= 𝑛0 max{𝜆2, (1 − 𝜆)2}𝑛2
1 + 𝑛1 max{((𝜆 + 𝛤 − 1)𝑛0 − 1)2,

((𝜆 + 𝛤 )𝑛0 − 1)2},

then we have

Pr[(1 − 𝜆)𝑛1𝐷0 + ((𝜆 + 𝛤 )𝑛0 − 1)𝐷1 − 𝐷0𝐷1 > 𝛤𝑛0𝑛1 − 𝑛1]

≤ e
− 2( ( (1−𝜆𝜋1 )𝛥𝑛0−𝜋1 )𝑛1 )2

𝑛0 max{𝜆2,(1−𝜆)2}𝑛2
1+𝑛1 max{( (𝜆+𝛤 −1)𝑛0−1)2,( (𝜆+𝛤 )𝑛0−1)2}

= e−
Θ(𝑛4 )
Θ(𝑛3 ) = e−Ω (𝑛) .

This implies

Pr
[
(1 − 𝜆) |D𝑆=0,𝑌=0 | + 𝜆

|D𝑆=1,𝑌=0 |
|D𝑆=1,𝑌=1 |

|D𝑆=0,𝑌=1 | + 1 > 𝛤𝑛0
]

= Pr
[
(1 − 𝜆)𝐷0 + 𝜆

𝐷1
𝑛1 − 𝐷1

(𝑛0 − 𝐷0) + 1 > 𝛤𝑛0
]

≤ Pr[(1 − 𝜆)𝐷0 (𝑛1 − 𝐷1) + 𝜆𝐷1 (𝑛0 − 𝐷0) + (𝑛1 − 𝐷1)
> 𝛤𝑛0 (𝑛1 − 𝐷1)]

= Pr[(1 − 𝜆)𝑛1𝐷0 + ((𝜆 + 𝛤 )𝑛0 − 1)𝐷1 − 𝐷0𝐷1 > 𝛤𝑛0𝑛1 − 𝑛1]

≤ e−Ω (𝑛) .

Let 𝛼 := |D𝑆=1,𝑌=1 |
𝑛1

. Then,

Pr
[ 𝛾
𝑛0
|D𝑆=0,𝑌=0 \ D̄0 | ≤ 1 − 𝜋0 − 𝜆𝛥

]
= Pr

[
|D𝑆=0,𝑌=0 | −max

{
0,
⌊
𝜆

(
|D𝑆=0,𝑌=0 | −

1 − 𝛼
𝛼
|D𝑆=0,𝑌=1 |

)⌋}
≤ 𝑛0

𝛾
(1 − 𝜋0 − 𝜆𝛥)

]
= Pr

[
|D𝑆=0,𝑌=0 | −max

{
0,
⌊
𝜆

(
|D𝑆=0,𝑌=0 |

−
|D𝑆=1,𝑌=0 |
|D𝑆=1,𝑌=1 |

|D𝑆=0,𝑌=1 |
)⌋}
≤ 𝛤𝑛0

]
≥ Pr

[
|D𝑆=0,𝑌=0 | − 𝜆

(
|D𝑆=0,𝑌=0 |

−
|D𝑆=1,𝑌=0 |
|D𝑆=1,𝑌=1 |

|D𝑆=0,𝑌=1 |
)
+ 1 ≤ 𝛤𝑛0

]
= Pr

[
(1 − 𝜆) |D𝑆=0,𝑌=0 | + 𝜆

|D𝑆=1,𝑌=0 |
|D𝑆=1,𝑌=1 |

|D𝑆=0,𝑌=1 | + 1 ≤ 𝛤𝑛0
]

= 1 − Pr
[
(1 − 𝜆) |D𝑆=0,𝑌=0 | + 𝜆

|D𝑆=1,𝑌=0 |
|D𝑆=1,𝑌=1 |

|D𝑆=0,𝑌=1 | + 1 > 𝛤𝑛0
]

≥ 1 − e−Ω (𝑛) .

Under the event above,

Pr[(X, 𝑆) ∈ D𝑆=0,𝑌=0 \ D̄0 | 𝑆 = 0] ≤ 𝛾

𝑛0
|D𝑆=0,𝑌=0 \ D̄0 |

≤ 1 − 𝜋0 − 𝜆𝛥.

Then, there exists a set 𝐴 with

(D𝑆=0,𝑌=0 \ D̄0) ⊆ 𝐴 ⊆ {(x, 𝑠) ∈ X × S : 𝑌 (x, 𝑠) = 0}

such that Pr[𝑌 = 0 | (X, 𝑆) ∈ 𝐴] = 1, and

| (1 − 𝜋0 − 𝜆𝛥) − Pr[(X, 𝑆) ∈ 𝐴 | 𝑆 = 0] | ≤ 𝛾

𝑛0
= 𝑂

( 1
𝑛

)
.

Define the classifier 𝑓 : X × S → Y by

𝑓 (x, 𝑠) :=

{
1[ (x,𝑠 )∉𝐴] , if 𝑠 = 0,
𝑌 (x, 𝑠), if 𝑠 = 1,

x ∈ X, 𝑠 ∈ S.

It is clear that 𝑓 achieves zero classification error over D \ D̄.
Regarding fairness,��Pr[𝑓 (X, 𝑆) = 1 | 𝑆 = 0] − Pr[𝑓 (X, 𝑆) = 1 | 𝑆 = 1]

��
=
��Pr[(X, 𝑆) ∉ 𝐴 | 𝑆 = 0] − Pr[𝑌 = 1 | 𝑆 = 1]

��
=
��Pr[(X, 𝑆) ∉ 𝐴 | 𝑆 = 0] − 𝜋1

��
≤
��(𝜋0 + 𝜆𝛥) − 𝜋1

�� + ��Pr[(X, 𝑆) ∉ 𝐴 | 𝑆 = 0] − (𝜋0 + 𝜆𝛥)
��

=
��(𝜋0 + 𝜆𝛥) − 𝜋1

�� + ��(1 − 𝜋0 − 𝜆𝛥) − Pr[(X, 𝑆) ∈ 𝐴 | 𝑆 = 0]
��

≤
��(𝜋0 + 𝜆𝛥) − 𝜋1

�� +𝑂 ( 1
𝑛

)
=
��𝜆𝛥 − 𝛥�� +𝑂 ( 1

𝑛

)
= (1 − 𝜆)𝛥 +𝑂

( 1
𝑛

)
.
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Regarding utility, since 𝐴 ⊆ {(x, 𝑠) ∈ X × S : 𝑌 (x, 𝑠) = 0}, then

∑︁
𝑠∈S

Pr[𝑓 (X, 𝑆) ≠ 𝑌 | 𝑆 = 𝑠]

= Pr[1[ (X,𝑆 )∉𝐴] ≠ 𝑌 | 𝑆 = 0] + Pr[𝑌 (X, 𝑆) ≠ 𝑌 | 𝑆 = 1]
= Pr[1[ (X,𝑆 )∉𝐴] ≠ 𝑌 | 𝑆 = 0] + 0
= Pr[(X, 𝑆) ∉ 𝐴,𝑌 = 0 | 𝑆 = 0] + Pr[(X, 𝑆) ∈ 𝐴,𝑌 = 1 | 𝑆 = 0]
= Pr[(X, 𝑆) ∉ 𝐴,𝑌 = 0 | 𝑆 = 0] + 0
= Pr[𝑌 = 0 | 𝑆 = 0] − Pr[(X, 𝑆) ∈ 𝐴,𝑌 = 0 | 𝑆 = 0]
= (1 − 𝜋0) − Pr[(X, 𝑆) ∈ 𝐴,𝑌 = 0 | 𝑆 = 0]
= (1 − 𝜋0) − Pr[(X, 𝑆) ∈ 𝐴 | 𝑆 = 0]

≤ (1 − 𝜋0) −
(
1 − 𝜋0 − 𝜆𝛥 −𝑂

( 1
𝑛

))
= 𝜆𝛥 +𝑂

( 1
𝑛

)
.

C.4 Proof of Proposition 1

We have that

Pr[𝑌 = 1, 𝑌 = 1 | 𝑆 = 1] − Pr[𝑌 = 1, 𝑌 = 1 | 𝑆 = 0]

= Pr[𝑌 = 1 | 𝑆 = 1] Pr[𝑌 = 1 | 𝑌 = 1, 𝑆 = 1]

− Pr[𝑌 = 1 | 𝑆 = 0] Pr[𝑌 = 1 | 𝑌 = 1, 𝑆 = 0]

= Pr[𝑌 = 1 | 𝑆 = 1] Pr[𝑌 = 1 | 𝑌 = 1, 𝑆 = 1]

− Pr[𝑌 = 1 | 𝑆 = 0] Pr[𝑌 = 1 | 𝑌 = 1, 𝑆 = 1]

+ Pr[𝑌 = 1 | 𝑆 = 0] Pr[𝑌 = 1 | 𝑌 = 1, 𝑆 = 1]

− Pr[𝑌 = 1 | 𝑆 = 0] Pr[𝑌 = 1 | 𝑌 = 1, 𝑆 = 0]
= (Pr[𝑌 = 1 | 𝑆 = 1]

− Pr[𝑌 = 1 | 𝑆 = 0]) Pr[𝑌 = 1 | 𝑌 = 1, 𝑆 = 1]

+ Pr[𝑌 = 1 | 𝑆 = 0] (Pr[𝑌 = 1 | 𝑌 = 1, 𝑆 = 1]

− Pr[𝑌 = 1 | 𝑌 = 1, 𝑆 = 0])

= 𝛥 · Pr[𝑌 = 1 | 𝑌 = 1, 𝑆 = 1] + 𝜋0 · EO𝑌=1,

and that

Pr[𝑌 = 1, 𝑌 = 0 | 𝑆 = 1] − Pr[𝑌 = 1, 𝑌 = 0 | 𝑆 = 0]

= Pr[𝑌 = 0 | 𝑆 = 1] Pr[𝑌 = 1 | 𝑌 = 0, 𝑆 = 1]

− Pr[𝑌 = 0 | 𝑆 = 0] Pr[𝑌 = 1 | 𝑌 = 0, 𝑆 = 0]

= Pr[𝑌 = 0 | 𝑆 = 1] Pr[𝑌 = 1 | 𝑌 = 0, 𝑆 = 1]

− Pr[𝑌 = 0 | 𝑆 = 0] Pr[𝑌 = 1 | 𝑌 = 0, 𝑆 = 1]

+ Pr[𝑌 = 0 | 𝑆 = 0] Pr[𝑌 = 1 | 𝑌 = 0, 𝑆 = 1]

− Pr[𝑌 = 0 | 𝑆 = 0] Pr[𝑌 = 1 | 𝑌 = 0, 𝑆 = 0]
= (Pr[𝑌 = 0 | 𝑆 = 1]

− Pr[𝑌 = 0 | 𝑆 = 0]) Pr[𝑌 = 1 | 𝑌 = 0, 𝑆 = 1]

+ Pr[𝑌 = 0 | 𝑆 = 0] (Pr[𝑌 = 1 | 𝑌 = 0, 𝑆 = 1]

− Pr[𝑌 = 1 | 𝑌 = 0, 𝑆 = 0])
= ((1 − Pr[𝑌 = 1 | 𝑆 = 1])

− (1 − Pr[𝑌 = 1 | 𝑆 = 0])) Pr[𝑌 = 1 | 𝑌 = 0, 𝑆 = 1]

+ (1 − Pr[𝑌 = 1 | 𝑆 = 0]) (Pr[𝑌 = 1 | 𝑌 = 0, 𝑆 = 1]

− Pr[𝑌 = 1 | 𝑌 = 0, 𝑆 = 0])

= −𝛥 · Pr[𝑌 = 1 | 𝑌 = 0, 𝑆 = 1] + (1 − 𝜋0) · EO𝑌=0 .

Thus,

DP = Pr[𝑌 = 1 | 𝑆 = 1] − Pr[𝑌 = 1 | 𝑆 = 0]

= (Pr[𝑌 = 1, 𝑌 = 1 | 𝑆 = 1] + Pr[𝑌 = 1, 𝑌 = 0 | 𝑆 = 1])

− (Pr[𝑌 = 1, 𝑌 = 1 | 𝑆 = 0] + Pr[𝑌 = 1, 𝑌 = 0 | 𝑆 = 0])

= (Pr[𝑌 = 1, 𝑌 = 1 | 𝑆 = 1] − Pr[𝑌 = 1, 𝑌 = 1 | 𝑆 = 0])

+ (Pr[𝑌 = 1, 𝑌 = 0 | 𝑆 = 1] − Pr[𝑌 = 1, 𝑌 = 0 | 𝑆 = 0])

= 𝛥 · Pr[𝑌 = 1 | 𝑌 = 1, 𝑆 = 1] + 𝜋0 · EO𝑌=1

− 𝛥 · Pr[𝑌 = 1 | 𝑌 = 0, 𝑆 = 1] + (1 − 𝜋0) · EO𝑌=0

= 𝛥 · Pr[𝑌 = 1 | 𝑌 = 1, 𝑆 = 1] + 𝜋0 · EO𝑌=1

+ 𝛥 · (1 − Pr[𝑌 = 1 | 𝑌 = 0, 𝑆 = 1] − 1) + (1 − 𝜋0) · EO𝑌=0

= 𝛥 · Pr[𝑌 = 1 | 𝑌 = 1, 𝑆 = 1] + 𝜋0 · EO𝑌=1

+ 𝛥 · (Pr[𝑌 = 0 | 𝑌 = 0, 𝑆 = 1] − 1) + (1 − 𝜋0) · EO𝑌=0

= 𝛥 · (Pr[𝑌 = 1 | 𝑌 = 1, 𝑆 = 1] + Pr[𝑌 = 0 | 𝑌 = 0, 𝑆 = 1] − 1)
+ 𝜋0 · EO𝑌=1 + (1 − 𝜋0) · EO𝑌=0

= 𝛥 · (Util𝑆=1 − 1) + 𝜋0 · EO𝑌=1 + (1 − 𝜋0) · EO𝑌=0 .

D EXPERIMENTAL RESULTS

See Table 7 for a full comparison of our method with other fair ML
techniques on the COMPAS (sex) dataset.

Table 4 and Table 5 present the average rank of the different
FairML techniques on all tasks. For a per-task breakdown of the
results aggregated in Table 4, see Table 8 and Table 9. For the
breakdown of Table 5, see Table 10, Table 11, Table 12, Table 13.
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Table 7: Comparison of our method with other FairML techniques on adaptability to different black-box classifiers (on COMPAS

(sex) dataset).

Base Model Method

Utility Fairness Unified

Acc. Δ BAcc. Δ DP Δ EO Δ FURG FUTR

Dummy 49.69±2.1 - 49.49±2.2 - 0.97±0.6 - 4.40±4.3 - - -

L
R

Vanilla 69.60±0.6 - 69.00±0.6 - 33.62±1.6 - 38.23±3.9 - - -
Reweight 68.89±0.9 -3.59% 67.68±0.9 -6.74% 27.51±2.2 -18.18% 34.27±5.5 -10.36% 9.10 2.76
Reduction𝐷𝑃 68.92±1.0 -3.42% 68.59±1.0 -2.08% 10.48±4.1 -68.82% 8.57±4.3 -77.60% 70.46 26.62
Reduction𝐸𝑂 68.73±0.9 -4.36% 68.23±0.9 -3.93% 12.85±2.8 -61.80% 10.94±3.3 -71.38% 62.44 16.06
Threshold𝐷𝑃 66.98±0.8 -13.16% 66.83±0.8 -11.10% 3.15±1.0 -90.64% 14.56±5.1 -61.92% 64.15 6.29
Threshold𝐸𝑂 62.04±1.0 -37.95% 60.26±1.0 -44.81% 3.22±2.6 -90.42% 6.36±3.9 -83.37% 45.51 2.10
AdaFair 59.54±3.6 -50.51% 58.10±4.7 -55.87% 19.43±12.4 -42.20% 25.65±16.1 -32.92% -15.63 0.71
Ours 69.04±1.2 -2.82% 68.86±1.2 -0.71% 2.71±2.6 -91.94% 7.73±2.3 -79.78% 84.09 48.62
Ours𝑒𝑛𝑠 69.11±1.0 -2.48% 68.90±1.1 -0.48% 2.45±2.2 -92.71% 7.58±2.1 -80.18% 84.96 58.40

K
N
N

Vanilla 64.97±1.1 - 64.54±1.2 - 15.53±1.2 - 13.98±1.2 - - -
Threshold𝐷𝑃 63.32±1.4 -10.80% 63.14±1.5 -9.34% 3.09±3.6 -80.10% 9.24±4.8 -33.89% 46.92 5.66
Threshold𝐸𝑂 62.25±1.3 -17.82% 61.43±1.4 -20.70% 2.48±1.4 -84.01% 7.24±3.4 -48.19% 46.84 3.43
Ours 64.24±1.3 -4.79% 63.99±1.3 -3.70% 3.10±1.6 -80.04% 5.32±5.7 -61.97% 66.76 16.72
Ours𝑒𝑛𝑠 64.27±1.3 -4.57% 64.02±1.3 -3.51% 3.19±2.7 -79.49% 5.48±3.4 -60.77% 66.09 17.37

M
L
P

Vanilla 68.63±1.4 - 68.00±1.4 - 36.12±3.0 - 43.06±6.7 - - -
Threshold𝐷𝑃 65.72±0.8 -15.36% 65.68±0.8 -12.55% 2.90±2.1 -91.96% 15.65±5.5 -63.66% 63.85 5.58
Threshold𝐸𝑂 59.29±0.9 -49.33% 57.19±1.0 -58.39% 4.88±2.7 -86.50% 8.97±4.9 -79.16% 28.97 1.54
Ours 66.88±1.2 -9.25% 66.69±1.0 -7.09% 13.06±10.1 -63.84% 20.66±6.4 -52.02% 49.76 7.09
Ours𝑒𝑛𝑠 68.32±0.8 -1.62% 68.01±0.8 +0.04% 6.23±4.5 -82.75% 6.23±4.0 -85.53% 83.35 84.14

D
T

Vanilla 60.71±1.3 - 60.30±1.3 - 8.45±3.7 - 9.04±3.5 - - -
Reweight 60.51±1.1 -1.85% 60.06±1.1 -2.20% 8.18±2.8 -3.21% 10.08±2.2 +11.43% -6.14 -2.03
Reduction𝐷𝑃 59.66±0.6 -9.57% 59.32±0.7 -9.05% 5.96±3.8 -29.48% 10.16±2.7 +12.40% -0.77 0.92
Reduction𝐸𝑂 60.87±0.7 +1.39% 60.41±0.7 +1.02% 6.17±1.7 -27.07% 9.59±2.9 +6.01% 11.73 10.53
Threshold𝐷𝑃 59.71±0.8 -9.10% 59.43±0.7 -8.04% 4.20±2.9 -50.38% 10.12±3.9 +11.96% 10.64 2.24
Threshold𝐸𝑂 60.65±0.9 -0.62% 60.23±1.0 -0.68% 7.83±4.2 -7.36% 9.67±5.9 +6.90% -0.42 0.23
AdaFair 61.46±1.4 +6.79% 61.04±1.4 +6.85% 10.07±2.2 +19.09% 12.06±3.4 +33.42% -19.43 -26.25
Ours 59.90±1.9 -7.41% 59.58±1.9 -6.61% 3.81±3.3 -54.92% 10.73±6.4 +18.71% 11.09 2.58
Ours𝑒𝑛𝑠 60.44±1.3 -2.47% 60.13±1.3 -1.57% 1.69±2.2 -79.98% 5.57±1.7 -38.45% 57.19 29.30

A
d
a
B
o
o
s
t

Vanilla 60.87±0.8 - 60.27±0.7 - 8.50±3.6 - 10.37±5.8 - - -
Reweight 61.26±1.4 +3.50% 60.67±1.3 +3.70% 7.53±3.3 -11.39% 9.52±2.2 -8.24% 13.42 9.81
Reduction𝐷𝑃 60.65±0.7 -1.98% 60.13±0.6 -1.31% 4.70±2.2 -44.72% 6.68±3.7 -35.62% 38.53 24.44
Reduction𝐸𝑂 60.73±1.0 -1.22% 60.31±0.9 +0.35% 4.70±3.3 -44.66% 8.97±3.7 -13.51% 28.65 29.08
Threshold𝐷𝑃 59.81±1.0 -9.44% 59.41±0.8 -7.94% 4.68±4.2 -44.90% 11.15±6.2 +7.54% 9.99 2.15
Threshold𝐸𝑂 60.77±1.0 -0.91% 60.22±0.8 -0.45% 7.63±5.5 -10.17% 11.58±7.1 +11.67% -1.43 -0.75
AdaFair 60.83±1.4 -0.30% 60.49±1.4 +2.09% 12.52±3.6 +47.33% 12.49±4.9 +20.49% -33.01 -33.91
Ours 59.98±0.8 -7.91% 59.54±0.8 -6.81% 3.89±1.7 -54.28% 7.76±4.6 -25.14% 32.35 5.39
Ours𝑒𝑛𝑠 60.85±0.9 -0.15% 60.49±0.9 +2.08% 2.86±2.8 -66.39% 6.55±3.8 -36.81% 52.57 51.60

B
a
g
g
i
n
g

Vanilla 61.62±0.3 - 61.29±0.2 - 13.61±2.2 - 13.11±1.6 - - -
Reweight 62.30±0.9 +5.71% 61.97±0.8 +5.74% 12.63±4.1 -7.25% 12.19±4.2 -7.05% 12.87 7.15
Reduction𝐷𝑃 62.50±0.8 +7.42% 62.17±0.8 +7.46% 5.28±3.2 -61.22% 4.90±2.1 -62.65% 69.37 61.94
Reduction𝐸𝑂 62.14±0.6 +4.42% 61.78±0.6 +4.14% 7.07±3.6 -48.06% 7.36±3.6 -43.88% 50.26 45.97
Threshold𝐷𝑃 61.33±1.1 -2.43% 61.25±1.2 -0.32% 2.45±1.7 -82.00% 8.53±3.3 -34.96% 57.11 42.67
Threshold𝐸𝑂 62.08±0.8 +3.85% 61.86±0.8 +4.88% 6.54±2.3 -51.96% 6.99±1.8 -46.69% 53.69 49.33
AdaFair 63.81±1.0 +18.40% 63.45±1.0 +18.29% 12.53±2.4 -7.97% 10.42±3.6 -20.53% 32.60 14.25
Ours 61.86±1.4 +2.00% 61.66±1.4 +3.13% 3.16±1.8 -76.76% 2.56±1.2 -80.51% 81.20 78.64

Ours𝑒𝑛𝑠 63.37±1.4 +14.69% 63.15±1.3 +15.80% 3.64±2.5 -73.24% 4.02±2.3 -69.36% 86.55 71.30
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Table 8: Rank of different FairML techniques with 6 target machine learning models separated into the 8 tasks (4 datasets x 2

sensitive attributes). The missing cells represent invalid combinations. Results for the COMPAS (sex), COMPAS (race), Adult

(sex) and Adult (race) tasks.

Task Method

LR KNN MLP DT ADA BAG

FURG FUTR FURG FUTR FURG FUTR FURG FUTR FURG FUTR FURG FUTR

C
O
M
P
A
S
(
s
e
x
)

Reweight 7 6 - - - - 7 7 5 4 8 8
Reduction𝐷𝑃 3 3 - - - - 6 5 2 3 3 3
Reduction𝐸𝑂 5 4 - - - - 2 2 4 2 6 5
Threshold𝐷𝑃 4 5 3 3 2 3 4 4 6 6 4 6
Threshold𝐸𝑂 6 7 4 4 4 4 5 6 7 7 5 4
AdaFair 8 8 - - - - 8 8 8 8 7 7
Ours 2 2 1 2 3 2 3 3 3 5 2 1
Ours𝑒𝑛𝑠 1 1 2 1 1 1 1 1 1 1 1 2

C
O
M
P
A
S
(
r
a
c
e
)

Reweight 7 7 - - - - 4 2 5 4 8 7
Reduction𝐷𝑃 6 6 - - - - 7 6 6 6 5 3
Reduction𝐸𝑂 5 5 - - - - 6 7 8 8 7 6
Threshold𝐷𝑃 4 3 2 4 4 3 3 3 3 3 2 4
Threshold𝐸𝑂 3 4 1 3 3 4 5 5 4 2 4 2
AdaFair 8 8 - - - - 8 8 7 7 6 8
Ours 1 1 3 1 2 2 1 4 2 5 3 5
Ours𝑒𝑛𝑠 2 2 4 2 1 1 2 1 1 1 1 1

A
d
u
l
t
(
s
e
x
)

Reweight 6 7 - - - - 6 4 5 2 6 3
Reduction𝐷𝑃 8 8 - - - - 4 3 2 4 5 4
Reduction𝐸𝑂 7 3 - - - - 8 8 7 7 8 6
Threshold𝐷𝑃 4 5 2 4 4 4 3 5 4 5 3 8
Threshold𝐸𝑂 1 4 1 3 1 3 7 7 6 6 4 5
AdaFair 5 6 - - - - 5 6 8 8 7 7
Ours 2 1 3 1 2 1 1 2 1 3 2 2
Ours𝑒𝑛𝑠 3 2 4 2 3 2 2 1 3 1 1 1

A
d
u
l
t
(
r
a
c
e
)

Reweight 7 7 - - - - 3 3 3 2 2 1
Reduction𝐷𝑃 1 4 - - - - 5 5 5 5 5 4
Reduction𝐸𝑂 6 3 - - - - 8 8 6 6 6 5
Threshold𝐷𝑃 3 5 1 3 2 3 4 4 1 4 1 6
Threshold𝐸𝑂 2 6 4 4 1 4 7 7 7 7 7 7
AdaFair 8 8 - - - - 6 6 8 8 8 8
Ours 4 1 3 2 4 2 1 1 4 3 3 2
Ours𝑒𝑛𝑠 5 2 2 1 3 1 2 2 2 1 4 3

D.1 Select Table 3 Results

On the Adult (sex) task, Reduction𝐷𝑃 has a negative FURG value.
Our trade-off metrics equally considers the method’s performance
on both EO and DP. Although Reduction𝐷𝑃 strongly improved DP,
EO had significantly deteriorated (+148.64%) which results in an
overall poor FURG value.

On the LSA (race) task, AdaFair resulted in a constant classifier.
That is, it only classified as the majority class. This can be noticed
by the BAcc score which is 50% which implies one class is predicted
100% of the time and the other class is predicted 0% of the time.
As a result, BAcc performance has a -98.42% relative loss w.r.t the
vanilla and dummy classifiers which yields lower FUTR and FURG
values.

Received 22 January 2024; revised 18 March 2024; accepted 29 March 2024

1803



Group Fairness via Group Consensus FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

Table 9: Rank of different FairML techniques with 6 target machine learning models separated into the 8 tasks (4 datasets x 2

sensitive attributes). The missing cells represent invalid combinations. Results for the LSA (sex), LSA (race), Bank (age), and

Bank (marital) tasks.

Task Method

LR KNN MLP DT ADA BAG

FURG FUTR FURG FUTR FURG FUTR FURG FUTR FURG FUTR FURG FUTR

L
S
A
(
s
e
x
)

Reweight 8 8 - - - - 7 4 7 4 7 3
Reduction𝐷𝑃 2 4 - - - - 1 2 1 2 1 2
Reduction𝐸𝑂 1 3 - - - - 2 1 2 1 2 1
Threshold𝐷𝑃 6 6 2 4 3 4 4 7 4 7 4 7
Threshold𝐸𝑂 3 5 1 3 1 3 6 5 6 5 6 6
AdaFair 7 7 - - - - 8 8 8 8 8 8
Ours 5 1 3 2 2 1 5 3 5 3 3 5
Ours𝑒𝑛𝑠 4 2 4 1 4 2 3 6 3 6 5 4

L
S
A
(
r
a
c
e
)

Reweight 7 7 - - - - 1 2 2 3 4 2
Reduction𝐷𝑃 5 3 - - - - 4 1 4 1 5 4
Reduction𝐸𝑂 8 5 - - - - 8 8 7 8 8 8
Threshold𝐷𝑃 3 4 3 3 3 3 2 4 1 4 3 5
Threshold𝐸𝑂 4 6 4 4 4 4 7 6 6 6 6 6
AdaFair 6 8 - - - - 6 7 8 7 7 7
Ours 2 2 1 2 1 1 5 5 5 5 1 3
Ours𝑒𝑛𝑠 1 1 2 1 2 2 3 3 3 2 2 1

B
a
n
k
(
a
g
e
)

Reweight 5 7 - - - - 8 8 8 8 8 8
Reduction𝐷𝑃 4 4 - - - - 2 1 2 1 6 6
Reduction𝐸𝑂 3 1 - - - - 4 3 5 4 4 4
Threshold𝐷𝑃 6 5 4 3 4 3 6 4 7 7 7 5
Threshold𝐸𝑂 7 6 3 4 3 4 7 7 4 3 2 2
AdaFair 8 8 - - - - 1 5 1 6 5 7
Ours 1 2 2 2 1 1 3 2 6 5 3 3
Ours𝑒𝑛𝑠 2 3 1 1 2 2 5 6 3 2 1 1

B
a
n
k
(
m
a
r
i
t
a
l
)

Reweight 4 5 - - - - 7 7 7 7 6 7
Reduction𝐷𝑃 6 7 - - - - 8 8 8 8 4 4
Reduction𝐸𝑂 7 8 - - - - 5 6 4 5 7 8
Threshold𝐷𝑃 5 4 4 4 4 4 6 5 6 3 8 6
Threshold𝐸𝑂 1 3 2 3 3 3 3 1 5 6 5 5
AdaFair 8 6 - - - - 1 4 1 2 3 3
Ours 2 1 3 2 1 1 4 3 2 1 2 2
Ours𝑒𝑛𝑠 3 2 1 1 2 2 2 2 3 4 1 1
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Table 10: The difference between our approach and other fairness methods as well as the target model baselines for all

combination of tasks and machine learning models we have benchmarked on. Our approach has a minimal impact on the

learning utility with either a minor decrease in Acc. or even increase in BAcc., and meanwhile it consistently reduces both DP

and EO. Results on the COMPAS dataset.

Utility Fairness

Acc. BAcc. DP EO

C
O
M
P
A
S
(
s
e
x
)

Ours

Vanilla -0.008±0.01 -0.005±0.01 -0.144±0.11 -0.122±0.12
Reweight -0.005±0.01 -0.002±0.01 -0.106±0.09 -0.093±0.12
Reduction𝐷𝑃 -0.002±0.01 -0.001±0.01 -0.032±0.04 -0.004±0.04
Reduction𝐸𝑂 -0.004±0.01 -0.003±0.01 -0.043±0.05 -0.020±0.05
Threshold𝐷𝑃 0.008±0.01 0.008±0.01 0.015±0.06 -0.024±0.08
Threshold𝐸𝑂 0.025±0.04 0.032±0.04 -0.005±0.07 0.007±0.07
AdaFair 0.013±0.05 0.016±0.06 -0.102±0.07 -0.080±0.10

Ours𝑒𝑛𝑠

Vanilla 0.000±0.01 0.002±0.01 -0.160±0.11 -0.154±0.14
Reweight 0.002±0.01 0.006±0.01 -0.113±0.08 -0.106±0.10
Reduction𝐷𝑃 0.005±0.01 0.006±0.01 -0.039±0.05 -0.016±0.04
Reduction𝐸𝑂 0.003±0.01 0.005±0.01 -0.050±0.05 -0.033±0.03
Threshold𝐷𝑃 0.016±0.01 0.015±0.01 -0.001±0.05 -0.056±0.06
Threshold𝐸𝑂 0.032±0.04 0.039±0.04 -0.021±0.05 -0.026±0.05
AdaFair 0.020±0.05 0.024±0.06 -0.110±0.07 -0.092±0.09

C
O
M
P
A
S
(
r
a
c
e
)

Ours

Vanilla -0.021±0.02 -0.015±0.02 -0.156±0.09 -0.148±0.10
Reweight -0.018±0.02 -0.011±0.02 -0.127±0.07 -0.116±0.10
Reduction𝐷𝑃 -0.003±0.03 0.004±0.03 -0.082±0.03 -0.067±0.04
Reduction𝐸𝑂 -0.010±0.03 -0.003±0.03 -0.089±0.04 -0.086±0.04
Threshold𝐷𝑃 0.005±0.02 0.005±0.02 0.016±0.04 -0.023±0.04
Threshold𝐸𝑂 0.000±0.03 0.007±0.03 -0.027±0.06 -0.013±0.07
AdaFair 0.013±0.07 0.022±0.08 -0.092±0.10 -0.070±0.09

Ours𝑒𝑛𝑠

Vanilla -0.013±0.01 -0.008±0.01 -0.156±0.09 -0.149±0.11
Reweight -0.008±0.01 -0.001±0.01 -0.124±0.08 -0.115±0.10
Reduction𝐷𝑃 0.007±0.03 0.014±0.03 -0.079±0.03 -0.066±0.05
Reduction𝐸𝑂 0.000±0.03 0.006±0.03 -0.086±0.05 -0.086±0.06
Threshold𝐷𝑃 0.013±0.01 0.012±0.01 0.016±0.03 -0.024±0.04
Threshold𝐸𝑂 0.008±0.02 0.014±0.03 -0.027±0.05 -0.014±0.06
AdaFair 0.023±0.07 0.032±0.08 -0.089±0.10 -0.069±0.10
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Table 11: The difference between our approach and other fairness methods as well as the target model baselines for all

combination of tasks and machine learning models we have benchmarked on. Our approach has a minimal impact on the

learning utility with either a minor decrease in Acc. or even increase in BAcc., and meanwhile it consistently reduces both DP

and EO. Results on the Adult dataset.

Utility Fairness

Acc. BAcc. DP EO

A
d
u
l
t
(
s
e
x
)

Ours

Vanilla -0.009±0.01 0.000±0.01 -0.056±0.01 -0.046±0.03
Reweight -0.002±0.02 0.035±0.06 -0.021±0.05 -0.027±0.02
Reduction𝐷𝑃 0.001±0.01 0.022±0.03 0.008±0.07 -0.073±0.12
Reduction𝐸𝑂 -0.009±0.01 -0.003±0.01 -0.056±0.02 -0.042±0.03
Threshold𝐷𝑃 0.044±0.01 0.032±0.01 0.124±0.02 -0.049±0.02
Threshold𝐸𝑂 0.006±0.02 0.023±0.02 -0.001±0.05 -0.002±0.04
AdaFair 0.007±0.05 0.057±0.12 -0.015±0.09 -0.016±0.05

Ours𝑒𝑛𝑠

Vanilla -0.005±0.00 0.005±0.00 -0.050±0.01 -0.041±0.04
Reweight 0.004±0.02 0.041±0.05 -0.013±0.05 -0.019±0.02
Reduction𝐷𝑃 0.007±0.01 0.028±0.03 0.016±0.07 -0.066±0.12
Reduction𝐸𝑂 -0.003±0.00 0.004±0.01 -0.048±0.02 -0.034±0.03
Threshold𝐷𝑃 0.049±0.01 0.037±0.01 0.130±0.02 -0.043±0.02
Threshold𝐸𝑂 0.010±0.01 0.028±0.02 0.005±0.05 0.004±0.04
AdaFair 0.013±0.05 0.064±0.12 -0.007±0.09 -0.009±0.04

A
d
u
l
t
(
r
a
c
e
)

Ours

Vanilla -0.001±0.00 0.003±0.01 -0.022±0.01 -0.034±0.03
Reweight 0.007±0.02 0.037±0.05 0.004±0.01 -0.015±0.03
Reduction𝐷𝑃 -0.001±0.00 0.001±0.01 -0.003±0.02 -0.015±0.01
Reduction𝐸𝑂 -0.003±0.00 -0.005±0.01 -0.020±0.02 -0.016±0.02
Threshold𝐷𝑃 0.011±0.00 0.007±0.01 0.064±0.01 -0.037±0.02
Threshold𝐸𝑂 0.006±0.01 0.015±0.02 0.005±0.02 -0.015±0.03
AdaFair 0.003±0.02 0.005±0.03 -0.034±0.01 -0.044±0.03

Ours𝑒𝑛𝑠

Vanilla 0.002±0.00 0.006±0.01 -0.022±0.01 -0.033±0.03
Reweight 0.010±0.01 0.042±0.05 0.005±0.01 -0.014±0.03
Reduction𝐷𝑃 0.002±0.01 0.006±0.01 -0.003±0.02 -0.013±0.01
Reduction𝐸𝑂 0.001±0.00 0.000±0.01 -0.020±0.02 -0.015±0.02
Threshold𝐷𝑃 0.013±0.00 0.010±0.00 0.064±0.01 -0.036±0.02
Threshold𝐸𝑂 0.009±0.01 0.018±0.01 0.004±0.02 -0.014±0.03
AdaFair 0.007±0.02 0.010±0.03 -0.034±0.01 -0.042±0.03
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Table 12: The difference between our approach and other fairness methods as well as the target model baselines for all

combination of tasks and machine learning models we have benchmarked on. Our approach has a minimal impact on the

learning utility with either a minor decrease in Acc. or even increase in BAcc., and meanwhile it consistently reduces both DP

and EO. Results on the LSA dataset.

Utility Fairness

Acc. BAcc. DP EO

L
S
A
(
s
e
x
)

Ours

Vanilla -0.017±0.01 0.003±0.01 -0.065±0.01 -0.104±0.04
Reweight -0.018±0.02 0.046±0.05 -0.023±0.04 -0.020±0.04
Reduction𝐷𝑃 -0.015±0.01 0.014±0.02 0.022±0.02 0.044±0.02
Reduction𝐸𝑂 -0.023±0.01 0.012±0.01 0.010±0.02 0.044±0.02
Threshold𝐷𝑃 -0.008±0.02 0.064±0.02 0.035±0.02 0.012±0.04
Threshold𝐸𝑂 -0.004±0.02 0.039±0.03 0.010±0.03 0.043±0.05
AdaFair -0.006±0.02 0.028±0.07 -0.044±0.06 -0.044±0.08

Ours𝑒𝑛𝑠

Vanilla -0.018±0.01 0.004±0.01 -0.062±0.02 -0.103±0.03
Reweight -0.020±0.03 0.048±0.05 -0.023±0.04 -0.023±0.04
Reduction𝐷𝑃 -0.018±0.01 0.015±0.02 0.021±0.02 0.040±0.02
Reduction𝐸𝑂 -0.025±0.02 0.013±0.01 0.010±0.02 0.040±0.02
Threshold𝐷𝑃 -0.009±0.02 0.066±0.02 0.038±0.03 0.013±0.04
Threshold𝐸𝑂 -0.005±0.02 0.041±0.03 0.012±0.04 0.044±0.05
AdaFair -0.008±0.02 0.029±0.07 -0.045±0.06 -0.048±0.08

L
S
A
(
r
a
c
e
)

Ours

Vanilla -0.010±0.01 0.002±0.01 -0.053±0.02 -0.118±0.09
Reweight -0.011±0.02 0.045±0.05 0.006±0.02 0.013±0.04
Reduction𝐷𝑃 -0.010±0.01 0.005±0.01 -0.019±0.03 -0.041±0.08
Reduction𝐸𝑂 0.000±0.01 -0.006±0.03 -0.077±0.06 -0.125±0.07
Threshold𝐷𝑃 0.010±0.01 0.011±0.01 0.033±0.01 -0.060±0.07
Threshold𝐸𝑂 0.003±0.02 0.043±0.05 -0.005±0.03 -0.041±0.06
AdaFair 0.005±0.02 0.024±0.07 -0.056±0.07 -0.071±0.08

Ours𝑒𝑛𝑠

Vanilla -0.006±0.00 0.004±0.01 -0.053±0.01 -0.117±0.08
Reweight -0.006±0.02 0.048±0.05 0.001±0.02 0.009±0.04
Reduction𝐷𝑃 -0.006±0.00 0.008±0.01 -0.024±0.03 -0.045±0.08
Reduction𝐸𝑂 0.004±0.01 -0.003±0.03 -0.082±0.06 -0.129±0.06
Threshold𝐷𝑃 0.013±0.01 0.013±0.01 0.033±0.02 -0.059±0.07
Threshold𝐸𝑂 0.006±0.01 0.046±0.05 -0.005±0.04 -0.040±0.06
AdaFair 0.009±0.02 0.027±0.07 -0.061±0.07 -0.074±0.08
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Table 13: The difference between our approach and other fairness methods as well as the target model baselines for all

combination of tasks and machine learning models we have benchmarked on. Our approach has a minimal impact on the

learning utility with either a minor decrease in Acc. or even increase in BAcc., and meanwhile it consistently reduces both DP

and EO. Results on the Bank dataset.

Utility Fairness

Acc. BAcc. DP EO

B
a
n
k
(
a
g
e
)

Ours

Vanilla -0.008±0.01 0.037±0.01 -0.023±0.03 -0.036±0.09
Reweight -0.002±0.01 0.070±0.09 -0.021±0.05 -0.025±0.06
Reduction𝐷𝑃 -0.009±0.01 0.033±0.02 0.019±0.03 -0.017±0.07
Reduction𝐸𝑂 -0.008±0.01 0.034±0.01 0.004±0.03 -0.007±0.06
Threshold𝐷𝑃 -0.007±0.01 0.043±0.01 0.054±0.04 -0.107±0.07
Threshold𝐸𝑂 0.002±0.01 0.043±0.03 0.005±0.02 -0.011±0.06
AdaFair -0.002±0.02 0.164±0.10 0.037±0.08 0.020±0.07

Ours𝑒𝑛𝑠

Vanilla -0.002±0.00 0.042±0.01 -0.017±0.03 -0.040±0.08
Reweight 0.007±0.01 0.079±0.08 -0.015±0.05 -0.027±0.08
Reduction𝐷𝑃 -0.001±0.00 0.042±0.01 0.025±0.03 -0.019±0.07
Reduction𝐸𝑂 0.000±0.00 0.042±0.01 0.010±0.03 -0.009±0.04
Threshold𝐷𝑃 -0.001±0.00 0.048±0.01 0.060±0.04 -0.110±0.07
Threshold𝐸𝑂 0.008±0.01 0.048±0.02 0.011±0.02 -0.015±0.05
AdaFair 0.006±0.01 0.173±0.10 0.043±0.07 0.018±0.08

B
a
n
k
(
m
a
r
i
t
a
l
)

Ours

Vanilla 0.000±0.00 0.006±0.01 -0.008±0.01 -0.006±0.03
Reweight 0.006±0.01 0.044±0.08 -0.005±0.01 -0.012±0.03
Reduction𝐷𝑃 0.000±0.00 0.006±0.01 -0.013±0.01 -0.014±0.02
Reduction𝐸𝑂 -0.002±0.00 0.008±0.01 -0.010±0.01 -0.008±0.03
Threshold𝐷𝑃 0.002±0.00 0.025±0.01 0.010±0.01 -0.035±0.03
Threshold𝐸𝑂 0.003±0.00 0.011±0.01 -0.002±0.01 0.001±0.02
AdaFair 0.005±0.01 0.149±0.10 0.008±0.01 0.011±0.03

Ours𝑒𝑛𝑠

Vanilla 0.004±0.00 0.010±0.01 -0.007±0.01 -0.006±0.03
Reweight 0.012±0.01 0.050±0.08 -0.005±0.01 -0.011±0.03
Reduction𝐷𝑃 0.005±0.00 0.012±0.01 -0.012±0.01 -0.013±0.02
Reduction𝐸𝑂 0.004±0.00 0.014±0.01 -0.010±0.01 -0.007±0.03
Threshold𝐷𝑃 0.006±0.00 0.029±0.01 0.010±0.01 -0.035±0.03
Threshold𝐸𝑂 0.007±0.00 0.014±0.01 -0.001±0.01 0.000±0.02
AdaFair 0.011±0.01 0.156±0.10 0.008±0.01 0.012±0.03
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